In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has...In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.展开更多
A newly developed on-line visual ferrograph(OLVF) gives a new way for engine wear state monitoring. However, the reliability of on-line wear debris image processing is challenged in both monitoring ship engines and ...A newly developed on-line visual ferrograph(OLVF) gives a new way for engine wear state monitoring. However, the reliability of on-line wear debris image processing is challenged in both monitoring ship engines and the Caterpillar bench test, which weren't reported in previous studies. Two problems were encountered in monitoring engines and processing images. First, small wear debris becomes hard to be identified from the image background after monitoring for a period of time. Second, the identification accuracy for wear debris is greatly reduced by background noise because of oil getting dark after nmning a period of time. Therefore, the methods adopted in image processing are examined. Two main reasons for the problems in wear debris identification are generalized as follows. Generally, the binary threshold was determined by global image pixels, and was easily affected by the non-objective zone in the image. The boundary of the objective zone in the binary image was misrecognized because of oil color becoming lighter during monitoring. Accordingly, improvements were made as follows. The objective zone in a global binary image was identified by scanning a column of pixels, and then a secondary binary process confined in the objective zone was carried out to identify small wear debris. Linear filtering with a specific template was used to depress noise in a binary image, and then a low-pass filtering was performed to eliminate the residual noise. Furthermore, the morphology parameters of single wear debris were extracted by separating each wear debris by a gray stack, and two indexes, WRWR (relative wear rate) and WRWS (relative wear severity), were proposed for wear description. New indexes were provided for on-line monitoring of engines.展开更多
Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor ...Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor the state of transformer windings,which is achieved through on-line detecting the leakage inductance of the windings.Specifically,the mathematical model is established for online identifying the leakage inductance of the windings by applying least square algorithm(LSA) to the equivalent circuit equations.The effect of measurement and model inaccuracy on the identification error is analyzed,and the corrected model is also given to decrease these adverse effect on the results.Finally,dynamic test is carried out to verify our method.The test results clearly show that our method is very accurate even under the fluctuation of load or power factor.Therefore,our method can be effectively used to on-line detect the windings deformation.展开更多
One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying li...One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying linear system and a small number of extra terms that exhibit the non-linear effects.In this paper,the method is illustrated in a simulated system and an experimental structure.The main objective of the non-linear resonant decay method is to identify the non-linear dynamic systems based on the use of a multi-shaker excitation using appropriated excitation which is obtained from the force appropriation approach.The experimental application of the method is indicated to provide suitable estimates of modal parameters for the identification of non-linear models of structures.展开更多
The paper proposes the identification method of linear and non-linear chromatographic system. Isotherms and lumped mass transfer coefficients of chromatography separating isomer sorbitol and mannitol on D80 adsorbent ...The paper proposes the identification method of linear and non-linear chromatographic system. Isotherms and lumped mass transfer coefficients of chromatography separating isomer sorbitol and mannitol on D80 adsorbent are determined. The analyses of root mean square error of chromatography elution curves are carried out. The results show that the system studied is non-linear and the theoretical elution curves of the non-linear chromatographic model are more accurate than those of the linear chromatographic model. Results of parameter sensitivity analyses show that elution curves of non-linear chromatographic separation are more sensitive to the variation of parameter "ai" in the adsorption isotherms than to the variation of parameter "bi" as well as lumped mass transfer coefficients.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ...Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.展开更多
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f...Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.展开更多
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi...Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.展开更多
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil...Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.展开更多
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti...This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.展开更多
Bovine tuberculosis (bTB) is an endemic zoonosis significantly affects animal health in Burkina Faso. The primary causative agent is Mycobacterium tuberculosis (M. tuberculosis) complex, mainly M. bovis. Cattle are co...Bovine tuberculosis (bTB) is an endemic zoonosis significantly affects animal health in Burkina Faso. The primary causative agent is Mycobacterium tuberculosis (M. tuberculosis) complex, mainly M. bovis. Cattle are considered as natural reservoir of M. bovis. However, in Burkina Faso, the circulation of these strains remains poorly understood and documented. This study aimed to identify and characterize Mycobacterium strains from suspected carcasses during routine meat inspection at Bobo-Dioulasso refrigerated slaughterhouse. A prospective cross-sectional study was conducted from January 2021 to December 2022 on cases of seizures linked to suspected bovine tuberculosis. Microbiological and molecular analyzes were used for mycobacterial strain isolation and characterization. Out of 50 samples, 24% tested positive by microscopy and 12% by culture. Molecular analysis identified 6 strains of Mycobacteria, exclusively Mycobacterium bovis specifically the subspecies bovis (Mycobacterium bovis subsp bovis). In conclusion, M. bovis subsp bovis is the primary agent responsible for bovine tuberculosis in Bobo-Dioulasso. Continuous monitoring of mycobacterial strains is therefore necessary for the effective control of this pathology in the local cattle population.展开更多
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta...This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.展开更多
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well...A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.展开更多
The intricate distribution of oil and water in tight rocks makes pinpointing oil layers challenging.While conventional identification methods offer potential solutions,their limited accuracy precludes them from being ...The intricate distribution of oil and water in tight rocks makes pinpointing oil layers challenging.While conventional identification methods offer potential solutions,their limited accuracy precludes them from being effective in their applications to unconventional reservoirs.This study employed nuclear magnetic resonance(NMR)spectrum decomposition to dissect the NMR T_(2)spectrum into multiple subspectra.Furthermore,it employed laboratory NMR experiments to ascertain the fluid properties of these sub-spectra,aiming to enhance identification accuracy.The findings indicate that fluids of distinct properties overlap in the T_(2)spectra,with bound water,movable water,bound oil,and movable oil appearing sequentially from the low-value zone to the high-value zone.Consequently,an oil layer classification scheme was proposed,which considers the physical properties of reservoirs,oil-bearing capacity,and the characteristics of both mobility and the oil-water two-phase flow.When applied to tight oil layer identification,the scheme's outcomes align closely with actual test results.A horizontal well,deployed based on these findings,has produced high-yield industrial oil flow,underscoring the precision and dependability of this new approach.展开更多
The social transformation brought aboutby digital technology is deeply impacting various industries.Digital education products, with core technologiessuch as 5G, AI, IoT (Internet of Things),etc., are continuously pen...The social transformation brought aboutby digital technology is deeply impacting various industries.Digital education products, with core technologiessuch as 5G, AI, IoT (Internet of Things),etc., are continuously penetrating areas such as teaching,management, and evaluation. Apps, miniprograms,and emerging large-scale models are providingexcellent knowledge performance and flexiblecross-media output. However, they also exposerisks such as content discrimination and algorithmcommercialization. This paper conducts anevidence-based analysis of digital education productrisks from four dimensions: “digital resourcesinformationdissemination-algorithm design-cognitiveassessment”. It breaks through corresponding identificationtechnologies and, relying on the diverse characteristicsof governance systems, explores governancestrategies for digital education products from the threedomains of “regulators-developers-users”.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
Identification of stratigraphic interfaces and lithology is a key aspect in geological and geotechnical investigations.In this study,a monitoring while-drilling system was developed,along with a corresponding data pre...Identification of stratigraphic interfaces and lithology is a key aspect in geological and geotechnical investigations.In this study,a monitoring while-drilling system was developed,along with a corresponding data pre-processing method.The method can handle invalid drilling data generated during manual operations.The correlation between various drilling parameters was analyzed,and a database of stratigraphic interfaces and key lithology identification based on the monitoring parameters was established.The average drilling speed was found to be the most suitable parameter for stratigraphic and lithology identification,and when the average drilling speed varied over a wide range,it corresponded to a stratigraphic interface.The average drilling speeds in sandy mudstone and sandstone strata were in the ranges of 0.1e0.2 m/min and 0.2e0.29 m/min,respectively.The results obtained using the present method were consistent with geotechnical survey results.The proposed method can be used for realtime lithology identification and represents a novel approach for intelligent geotechnical surveying.展开更多
The rapid development of the internet and digital media has provided convenience while also posing a potential risk of steganography abuse.Identifying steganographer is essential in tracing secret information origins ...The rapid development of the internet and digital media has provided convenience while also posing a potential risk of steganography abuse.Identifying steganographer is essential in tracing secret information origins and preventing illicit covert communication online.Accurately discerning a steganographer from many normal users is challenging due to various factors,such as the complexity in obtaining the steganography algorithm,extracting highly separability features,and modeling the cover data.After extensive exploration,several methods have been proposed for steganographer identification.This paper presents a survey of existing studies.Firstly,we provide a concise introduction to the research background and outline the issue of steganographer identification.Secondly,we present fundamental concepts and techniques that establish a general framework for identifying steganographers.Within this framework,state-of-the-art methods are summarized from five key aspects:data acquisition,feature extraction,feature optimization,identification paradigm,and performance evaluation.Furthermore,theoretical and experimental analyses examine the advantages and limitations of these existing methods.Finally,the survey highlights outstanding issues in image steganographer identification that deserve further research.展开更多
文摘In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2009CB724404)National Hitech Research and Development Program of China (863 Program, Grant No. 2006AA04Z431)National Natural Science Foundation of China (Grant No. 50905135)
文摘A newly developed on-line visual ferrograph(OLVF) gives a new way for engine wear state monitoring. However, the reliability of on-line wear debris image processing is challenged in both monitoring ship engines and the Caterpillar bench test, which weren't reported in previous studies. Two problems were encountered in monitoring engines and processing images. First, small wear debris becomes hard to be identified from the image background after monitoring for a period of time. Second, the identification accuracy for wear debris is greatly reduced by background noise because of oil getting dark after nmning a period of time. Therefore, the methods adopted in image processing are examined. Two main reasons for the problems in wear debris identification are generalized as follows. Generally, the binary threshold was determined by global image pixels, and was easily affected by the non-objective zone in the image. The boundary of the objective zone in the binary image was misrecognized because of oil color becoming lighter during monitoring. Accordingly, improvements were made as follows. The objective zone in a global binary image was identified by scanning a column of pixels, and then a secondary binary process confined in the objective zone was carried out to identify small wear debris. Linear filtering with a specific template was used to depress noise in a binary image, and then a low-pass filtering was performed to eliminate the residual noise. Furthermore, the morphology parameters of single wear debris were extracted by separating each wear debris by a gray stack, and two indexes, WRWR (relative wear rate) and WRWS (relative wear severity), were proposed for wear description. New indexes were provided for on-line monitoring of engines.
基金This work was supported in part by National Natural Science Foundation of China(No.50577050).
文摘Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor the state of transformer windings,which is achieved through on-line detecting the leakage inductance of the windings.Specifically,the mathematical model is established for online identifying the leakage inductance of the windings by applying least square algorithm(LSA) to the equivalent circuit equations.The effect of measurement and model inaccuracy on the identification error is analyzed,and the corrected model is also given to decrease these adverse effect on the results.Finally,dynamic test is carried out to verify our method.The test results clearly show that our method is very accurate even under the fluctuation of load or power factor.Therefore,our method can be effectively used to on-line detect the windings deformation.
文摘One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying linear system and a small number of extra terms that exhibit the non-linear effects.In this paper,the method is illustrated in a simulated system and an experimental structure.The main objective of the non-linear resonant decay method is to identify the non-linear dynamic systems based on the use of a multi-shaker excitation using appropriated excitation which is obtained from the force appropriation approach.The experimental application of the method is indicated to provide suitable estimates of modal parameters for the identification of non-linear models of structures.
文摘The paper proposes the identification method of linear and non-linear chromatographic system. Isotherms and lumped mass transfer coefficients of chromatography separating isomer sorbitol and mannitol on D80 adsorbent are determined. The analyses of root mean square error of chromatography elution curves are carried out. The results show that the system studied is non-linear and the theoretical elution curves of the non-linear chromatographic model are more accurate than those of the linear chromatographic model. Results of parameter sensitivity analyses show that elution curves of non-linear chromatographic separation are more sensitive to the variation of parameter "ai" in the adsorption isotherms than to the variation of parameter "bi" as well as lumped mass transfer coefficients.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金financially supported by the National Natural Science Foundation of China(No.52174001)the National Natural Science Foundation of China(No.52004064)+1 种基金the Hainan Province Science and Technology Special Fund “Research on Real-time Intelligent Sensing Technology for Closed-loop Drilling of Oil and Gas Reservoirs in Deepwater Drilling”(ZDYF2023GXJS012)Heilongjiang Provincial Government and Daqing Oilfield's first batch of the scientific and technological key project “Research on the Construction Technology of Gulong Shale Oil Big Data Analysis System”(DQYT-2022-JS-750)。
文摘Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.
基金the Competitive Research Fund of the University of Aizu,Japan.
文摘Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.
基金Supported by the National Natural Science Foundation(42202133,42072174,42130803,41872148)PetroChina Science and Technology Innovation Fund(2023DQ02-0106)PetroChina Basic Technology Project(2021DJ0101).
文摘Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
文摘This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.
文摘Bovine tuberculosis (bTB) is an endemic zoonosis significantly affects animal health in Burkina Faso. The primary causative agent is Mycobacterium tuberculosis (M. tuberculosis) complex, mainly M. bovis. Cattle are considered as natural reservoir of M. bovis. However, in Burkina Faso, the circulation of these strains remains poorly understood and documented. This study aimed to identify and characterize Mycobacterium strains from suspected carcasses during routine meat inspection at Bobo-Dioulasso refrigerated slaughterhouse. A prospective cross-sectional study was conducted from January 2021 to December 2022 on cases of seizures linked to suspected bovine tuberculosis. Microbiological and molecular analyzes were used for mycobacterial strain isolation and characterization. Out of 50 samples, 24% tested positive by microscopy and 12% by culture. Molecular analysis identified 6 strains of Mycobacteria, exclusively Mycobacterium bovis specifically the subspecies bovis (Mycobacterium bovis subsp bovis). In conclusion, M. bovis subsp bovis is the primary agent responsible for bovine tuberculosis in Bobo-Dioulasso. Continuous monitoring of mycobacterial strains is therefore necessary for the effective control of this pathology in the local cattle population.
基金partially supported by the Natural Science Foundation of China (Grant Nos.62103052,52272358)partially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.
基金Supported by Shanghai Municipal Science and Technology Program (Grant No.21511101701)National Key Research and Development Program of China (Grant No.2021YFC0122704)。
文摘A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.
基金funded by a major special project of PetroChina Company Limited(No.2021DJ1003No.2023ZZ2).
文摘The intricate distribution of oil and water in tight rocks makes pinpointing oil layers challenging.While conventional identification methods offer potential solutions,their limited accuracy precludes them from being effective in their applications to unconventional reservoirs.This study employed nuclear magnetic resonance(NMR)spectrum decomposition to dissect the NMR T_(2)spectrum into multiple subspectra.Furthermore,it employed laboratory NMR experiments to ascertain the fluid properties of these sub-spectra,aiming to enhance identification accuracy.The findings indicate that fluids of distinct properties overlap in the T_(2)spectra,with bound water,movable water,bound oil,and movable oil appearing sequentially from the low-value zone to the high-value zone.Consequently,an oil layer classification scheme was proposed,which considers the physical properties of reservoirs,oil-bearing capacity,and the characteristics of both mobility and the oil-water two-phase flow.When applied to tight oil layer identification,the scheme's outcomes align closely with actual test results.A horizontal well,deployed based on these findings,has produced high-yield industrial oil flow,underscoring the precision and dependability of this new approach.
基金supported by the 2022 National Natural Science Foundation of China(No.62277002)the National Key Research and Development Program of China(2022YFC3303500).
文摘The social transformation brought aboutby digital technology is deeply impacting various industries.Digital education products, with core technologiessuch as 5G, AI, IoT (Internet of Things),etc., are continuously penetrating areas such as teaching,management, and evaluation. Apps, miniprograms,and emerging large-scale models are providingexcellent knowledge performance and flexiblecross-media output. However, they also exposerisks such as content discrimination and algorithmcommercialization. This paper conducts anevidence-based analysis of digital education productrisks from four dimensions: “digital resourcesinformationdissemination-algorithm design-cognitiveassessment”. It breaks through corresponding identificationtechnologies and, relying on the diverse characteristicsof governance systems, explores governancestrategies for digital education products from the threedomains of “regulators-developers-users”.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
文摘Identification of stratigraphic interfaces and lithology is a key aspect in geological and geotechnical investigations.In this study,a monitoring while-drilling system was developed,along with a corresponding data pre-processing method.The method can handle invalid drilling data generated during manual operations.The correlation between various drilling parameters was analyzed,and a database of stratigraphic interfaces and key lithology identification based on the monitoring parameters was established.The average drilling speed was found to be the most suitable parameter for stratigraphic and lithology identification,and when the average drilling speed varied over a wide range,it corresponded to a stratigraphic interface.The average drilling speeds in sandy mudstone and sandstone strata were in the ranges of 0.1e0.2 m/min and 0.2e0.29 m/min,respectively.The results obtained using the present method were consistent with geotechnical survey results.The proposed method can be used for realtime lithology identification and represents a novel approach for intelligent geotechnical surveying.
基金supported by the National Key Research and Development Program of China(No.2022YFB3102900)the National Natural Science Foundation of China(Nos.62172435,62202495 and 62002103)+2 种基金Zhongyuan Science and Technology Innovation Leading Talent Project of China(No.214200510019)Key Research and Development Project of Henan Province(No.2211321200)the Natural Science Foundation of Henan Province(No.222300420058).
文摘The rapid development of the internet and digital media has provided convenience while also posing a potential risk of steganography abuse.Identifying steganographer is essential in tracing secret information origins and preventing illicit covert communication online.Accurately discerning a steganographer from many normal users is challenging due to various factors,such as the complexity in obtaining the steganography algorithm,extracting highly separability features,and modeling the cover data.After extensive exploration,several methods have been proposed for steganographer identification.This paper presents a survey of existing studies.Firstly,we provide a concise introduction to the research background and outline the issue of steganographer identification.Secondly,we present fundamental concepts and techniques that establish a general framework for identifying steganographers.Within this framework,state-of-the-art methods are summarized from five key aspects:data acquisition,feature extraction,feature optimization,identification paradigm,and performance evaluation.Furthermore,theoretical and experimental analyses examine the advantages and limitations of these existing methods.Finally,the survey highlights outstanding issues in image steganographer identification that deserve further research.