Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I...Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.展开更多
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti...This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.展开更多
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge...Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.展开更多
BACKGROUND The detection rate of depression among university students has been increasing in recent years,becoming one of the main psychological diseases that endangers their physical and mental health.According to st...BACKGROUND The detection rate of depression among university students has been increasing in recent years,becoming one of the main psychological diseases that endangers their physical and mental health.According to statistics,self-harm and suicide,for which there is no effective intervention,are the second leading causes of death.AIM To explore the relationship between different elements and levels of physical activity and college students’depression-symptom-specific working memory indicators.METHODS Of 143 college students were analyzed using the Beck Depression Self-Rating Scale,the Physical Activity Rating Scale,and the Working Memory Task.RESULTS There was a significant difference between college students with depressive symptoms and healthy college students in completing verbal and spatial working memory(SWM)tasks correctly(all P<0.01).Physical Activity Scale-3 scores were significantly and positively correlated with the correct rate of the verbal working memory task(r=0.166)and the correct rate of the SWM task(r=0.210)(all P<0.05).There were significant differences in the correct rates of verbal and SWM tasks according to different exercise intensities(all P<0.05)and different exercise durations(all P<0.05),and no significant differences in the correct rates of verbal and SWM tasks by exercise frequency(all P>0.05).CONCLUSION An increase in physical exercise among college students,particularly medium-and high-intensity exercise and exercise of 30 min or more,can improve the correct rate of completing working memory tasks.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of li...Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.展开更多
The rapid development of the digital economy has provided a new impetus for rural residents to extend their working hours.Based on the data collected by the China Labor-force Dynamics Survey(CLDS)in 2014,2016,and 2018...The rapid development of the digital economy has provided a new impetus for rural residents to extend their working hours.Based on the data collected by the China Labor-force Dynamics Survey(CLDS)in 2014,2016,and 2018,this paper measured the development level of the digital economy in China from the perspectives of internet development and digital financial inclusion,and tested the mechanisms of how the digital economy affected rural residents’working hours.The results showed that the digital economy extended rural residents’working hours by expanding information channels and enhancing human capital,and this mechanism was affected by heterogeneity in rural residents’educational background,age,and social capital.Building on these findings,this paper holds that to increase rural residents’income by extending their working hours and achieving common prosperity for all,it is necessary to expand the opportunities for rural residents to participate in skills training and promote their accumulation of human capital.展开更多
Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line leng...Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line length,mining technology,transportation system,equipment configuration,transportation access and many other factors,it systematically discusses the feasibility of straightening the working line of adjacent open-cast mines.Through in-depth theoretical analysis,it establishes the mathematical model of impact indicators and cost calculation,and it is concluded that the work line straightening can be technically achieved.However,from the perspective of economic benefits,straightening the working line does not show obvious advantages.展开更多
This experimental study investigated how text difficulty and different working memory capacity(WMC)affected Chinese EFL learners’reading comprehension and their tendency to engage in task-unrelated thoughts,that is,m...This experimental study investigated how text difficulty and different working memory capacity(WMC)affected Chinese EFL learners’reading comprehension and their tendency to engage in task-unrelated thoughts,that is,mind wandering(MW),in the course of reading.Sixty first-year university non-English majors participated in the study.A two-factor mixed experimental design of 2(text difficulty:difficult and simple)×2(WMC:high/large and low/small)was employed.Results revealed that 1)the main and interaction effects of WMC and text difficulty on voluntary MW were significant,whereas those on involuntary MW were not;2)while reading the easy texts,the involuntary MW of high-WMC individuals was less frequent than that of low-WMC ones,whereas while reading the difficult ones,the direct relationship between WMC and involuntary MW was not found;and that 3)high-WMC individuals had a lower overall rate of MW and better reading performance than low-WMC individuals did,but with increasing text difficulty,their rates of overall MW and voluntary MW were getting higher and higher,and the reading performance was getting lower and lower.These results lend support to WM theory and have pedagogical implications for the instruction of L2 reading.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.C...The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.展开更多
The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination ...The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination reaction by melt coextrusion.Beside evenly mixing of poly(hexamethylene guanidine)(PHMG)and PET in the melt coextrusion procedure,the amination reaction also occurred between PHMG and PET under high temperature(230-270℃).The antibacterial ability of composite PET showed obvious PHMG concentration dependence,and antibacterial activity reached more than 99%when PHMG content was 2.5 wt%.Moreover,LIVE/DEAD fluorescence test further confirmed that the composite PET could kill bacteria quickly and efiectively(within 30 min);while negligible cytotoxicity was observed to HSF and HUVEC cells.Onestep eco-friendly fabrication of composite antibacterial PET was accomplished by on-line melt coextrusion.The composite antibacterial PET has potential use in multiple fields to combat with pathogenic including textiles,packaging materials,decoration materials and biomedical devices,etc.展开更多
A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimizati...A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimization cases for a certain chemical plant are obtained off-line byusing PROCESS-Ⅱ or other flowsheeting programming with optimization.Then,taking these cases astraining examples,we establish a neural network systems which can be used on-line as an optimizer toobtain setpoints from input data sampled from distributed control system through gross error detectionand data reconciliation procedures.Such an on-line optimizer possesses two advantages over nonlinearprogramming package:first of all,there is no convergence problem for the trained ANN to be usedonline;secondly,the frequency for setpoints updating is not limited because only algebraic calculationrather than optimization is required to be carried out on-line.Here two key problems ofimplementing ANN approaches to the on-line optimization展开更多
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging...Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components.展开更多
Background: As one of the strategies to reduce infant morbidity and mortality, the World Health Organization recommends early initiation of exclusive breastfeeding and timely introduction of complementary feeding with...Background: As one of the strategies to reduce infant morbidity and mortality, the World Health Organization recommends early initiation of exclusive breastfeeding and timely introduction of complementary feeding with continued breastfeeding for up to two years or beyond. Although breastfeeding is a natural process, it is influenced by different socio-cultural factors, habits, standards, and behaviours. Rapid industrialization and changes in lifestyle have seen increasing numbers of women in the labour force, and associated poor Exclusive Breastfeeding practices among working mothers. The aim of this study was to identify the determinants of breastfeeding practices among working mothers in Solwezi District of Zambia. Methods: This was a cross-sectional comparative survey comparing determinants of breastfeeding practices among working mothers aged 15 - 49 years in urban and rural areas of Solwezi District. The study was carried out in the Under-five Clinics at Solwezi, Kimasala and Mushitala Urban Clinics, as well as St. Francis, Kapijimpanga and Kisalala Rural Health Centers. Eighty-seven participants were successfully recruited using convenience sampling. A researcher-assisted questionnaire was used to collect data. Data analysis was done using SPSS version 27.0. Descriptive statistical analysis was done using numerical measures such as measures of central tendency and dispersion. The Pearson Chi Square test, correlation and linear regression analysis were performed to test association between the variables at the 0.05 level of significance. Are you assessing exclusive breastfeeding alone or what? Results: The mean age of respondents was 27.44 years (SD = 6.042 years) and the majority of the respondents were married (71.3%, n = 62). Forty-three percent of the respondents were self-employed while the rest were in formal government or private sector employment. Overall, 97.7% of the respondents had heard of exclusive breastfeeding, with health facilities being the most frequent source of information (64.4%). Attitude towards exclusive breastfeeding was generally positive. Fifty-eight percent of respondents exclusively breastfed while the rest were on mixed feeding. Seventy-one percent of respondents reported that their workplaces did not have breastfeeding facilities at work. Only 11.5% of the respondents reported having cultural beliefs restricting breastfeeding. Statistically significant associations were obtained from cross-tabulation analysis between respondent’s occupation and baby feeding type (p 0.001);workload and feeding type (0.024);as well as knowledge of EBF and feeding type (p 0.001). Conclusion: Majority of the respondents demonstrated good knowledge and positive attitude towards exclusive breastfeeding. This study recommends sensitization campaigns in communities to raise awareness about the importance of breastfeeding, and foster behaviour change that promotes breastfeeding.展开更多
BACKGROUND Public employees worldwide are increasingly concerned about work anxiety and depression.Cognitive-behavioral career coaching has emerged as a promising strategy for addressing these mental health disorders,...BACKGROUND Public employees worldwide are increasingly concerned about work anxiety and depression.Cognitive-behavioral career coaching has emerged as a promising strategy for addressing these mental health disorders,which can negatively impact on a person's overall well-being and performance.AIM To examine whether cognitive-behavioral career coaching reduces work anxiety and depression among Nigerian public employees.METHODS A total of 120 public employees(n=60)suffering from severe anxiety and depression were randomly assigned to the treatment or control groups in this study.Cognitive behavioral coaching was provided twice a week to those in the treatment group,whereas no treatment was given to those in the control group.As part of the study,the Hamilton Anxiety Rating Scales and Beck Depression Inventory were used to collect data.RESULTS Analysis of covariance of the data from participants indicates a significant effect of cognitive-behavioral career coaching on work anxiety and depression.CONCLUSION Insights into the underlying mechanisms by which cognitive behavior career coaching exerts its effects have been gained from this study.Also,the study has gathered valuable data that can inform future practice and guide the development of strategies for supporting mental health at work.展开更多
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515.
文摘Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.
文摘This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.
基金supported by the National Natural Science Foundations of China under Grant Nos.52206123,52075506,52205543,52322510,52275470 and 52105129Science and Technology Planning Project of Sichuan Province under Grant No.2021YJ0557+2 种基金Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1947Presidential Foundation of China Academy of Engineering PhysicsGrant No.YZJJZQ2022009。
文摘Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.
文摘BACKGROUND The detection rate of depression among university students has been increasing in recent years,becoming one of the main psychological diseases that endangers their physical and mental health.According to statistics,self-harm and suicide,for which there is no effective intervention,are the second leading causes of death.AIM To explore the relationship between different elements and levels of physical activity and college students’depression-symptom-specific working memory indicators.METHODS Of 143 college students were analyzed using the Beck Depression Self-Rating Scale,the Physical Activity Rating Scale,and the Working Memory Task.RESULTS There was a significant difference between college students with depressive symptoms and healthy college students in completing verbal and spatial working memory(SWM)tasks correctly(all P<0.01).Physical Activity Scale-3 scores were significantly and positively correlated with the correct rate of the verbal working memory task(r=0.166)and the correct rate of the SWM task(r=0.210)(all P<0.05).There were significant differences in the correct rates of verbal and SWM tasks according to different exercise intensities(all P<0.05)and different exercise durations(all P<0.05),and no significant differences in the correct rates of verbal and SWM tasks by exercise frequency(all P>0.05).CONCLUSION An increase in physical exercise among college students,particularly medium-and high-intensity exercise and exercise of 30 min or more,can improve the correct rate of completing working memory tasks.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
文摘Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.
基金This paper is part of the Youth Program of Science and Technology Research of Chongqing Municipal Education Commission(KJQN202300545)Youth Program of National Social Science Fund of China(21CJY001)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300567).
文摘The rapid development of the digital economy has provided a new impetus for rural residents to extend their working hours.Based on the data collected by the China Labor-force Dynamics Survey(CLDS)in 2014,2016,and 2018,this paper measured the development level of the digital economy in China from the perspectives of internet development and digital financial inclusion,and tested the mechanisms of how the digital economy affected rural residents’working hours.The results showed that the digital economy extended rural residents’working hours by expanding information channels and enhancing human capital,and this mechanism was affected by heterogeneity in rural residents’educational background,age,and social capital.Building on these findings,this paper holds that to increase rural residents’income by extending their working hours and achieving common prosperity for all,it is necessary to expand the opportunities for rural residents to participate in skills training and promote their accumulation of human capital.
文摘Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line length,mining technology,transportation system,equipment configuration,transportation access and many other factors,it systematically discusses the feasibility of straightening the working line of adjacent open-cast mines.Through in-depth theoretical analysis,it establishes the mathematical model of impact indicators and cost calculation,and it is concluded that the work line straightening can be technically achieved.However,from the perspective of economic benefits,straightening the working line does not show obvious advantages.
文摘This experimental study investigated how text difficulty and different working memory capacity(WMC)affected Chinese EFL learners’reading comprehension and their tendency to engage in task-unrelated thoughts,that is,mind wandering(MW),in the course of reading.Sixty first-year university non-English majors participated in the study.A two-factor mixed experimental design of 2(text difficulty:difficult and simple)×2(WMC:high/large and low/small)was employed.Results revealed that 1)the main and interaction effects of WMC and text difficulty on voluntary MW were significant,whereas those on involuntary MW were not;2)while reading the easy texts,the involuntary MW of high-WMC individuals was less frequent than that of low-WMC ones,whereas while reading the difficult ones,the direct relationship between WMC and involuntary MW was not found;and that 3)high-WMC individuals had a lower overall rate of MW and better reading performance than low-WMC individuals did,but with increasing text difficulty,their rates of overall MW and voluntary MW were getting higher and higher,and the reading performance was getting lower and lower.These results lend support to WM theory and have pedagogical implications for the instruction of L2 reading.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金partially supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)the Innovation Fund of CNNC(Lingchuang Fund)+1 种基金EP/T000414/1 PREdictive Modeling with QuantIfication of UncERtainty for MultiphasE Systems(PREMIERE)the Leverhulme Centre for Wildfires,Environment,and Society through the Leverhulme Trust(No.RC-2018-023).
文摘The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.
基金Funded by the National Natural Science Foundation of China(No.51703169)Key Program of Science and Technology of Jieyang City(No.2019016)Key Research and Development Program of Shandong Province of China(No.2019JZZY010338)。
文摘The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination reaction by melt coextrusion.Beside evenly mixing of poly(hexamethylene guanidine)(PHMG)and PET in the melt coextrusion procedure,the amination reaction also occurred between PHMG and PET under high temperature(230-270℃).The antibacterial ability of composite PET showed obvious PHMG concentration dependence,and antibacterial activity reached more than 99%when PHMG content was 2.5 wt%.Moreover,LIVE/DEAD fluorescence test further confirmed that the composite PET could kill bacteria quickly and efiectively(within 30 min);while negligible cytotoxicity was observed to HSF and HUVEC cells.Onestep eco-friendly fabrication of composite antibacterial PET was accomplished by on-line melt coextrusion.The composite antibacterial PET has potential use in multiple fields to combat with pathogenic including textiles,packaging materials,decoration materials and biomedical devices,etc.
基金Supported by the National Nature Science Foundation of China,the Research Foundation of General Corporation of China Petro-Chemical Industry and the Natural Science and Engineering Research Council of Canada.
文摘A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimization cases for a certain chemical plant are obtained off-line byusing PROCESS-Ⅱ or other flowsheeting programming with optimization.Then,taking these cases astraining examples,we establish a neural network systems which can be used on-line as an optimizer toobtain setpoints from input data sampled from distributed control system through gross error detectionand data reconciliation procedures.Such an on-line optimizer possesses two advantages over nonlinearprogramming package:first of all,there is no convergence problem for the trained ANN to be usedonline;secondly,the frequency for setpoints updating is not limited because only algebraic calculationrather than optimization is required to be carried out on-line.Here two key problems ofimplementing ANN approaches to the on-line optimization
基金National Natural Science Foundation of China(No.52305373)Jiangxi Provincial Natural Science Foundation(No.20232BAB214053)+2 种基金Science and Technology Major Project of Jiangxi,China(No.20194ABC28001)Fund of Jiangxi Key Laboratory of Forming and Joining Technology for Aerospace Components,Nanchang Hangkong University(No.EL202303299)PhD Starting Foundation of Nanchang Hangkong University(No,EA202303235).
文摘Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components.
文摘Background: As one of the strategies to reduce infant morbidity and mortality, the World Health Organization recommends early initiation of exclusive breastfeeding and timely introduction of complementary feeding with continued breastfeeding for up to two years or beyond. Although breastfeeding is a natural process, it is influenced by different socio-cultural factors, habits, standards, and behaviours. Rapid industrialization and changes in lifestyle have seen increasing numbers of women in the labour force, and associated poor Exclusive Breastfeeding practices among working mothers. The aim of this study was to identify the determinants of breastfeeding practices among working mothers in Solwezi District of Zambia. Methods: This was a cross-sectional comparative survey comparing determinants of breastfeeding practices among working mothers aged 15 - 49 years in urban and rural areas of Solwezi District. The study was carried out in the Under-five Clinics at Solwezi, Kimasala and Mushitala Urban Clinics, as well as St. Francis, Kapijimpanga and Kisalala Rural Health Centers. Eighty-seven participants were successfully recruited using convenience sampling. A researcher-assisted questionnaire was used to collect data. Data analysis was done using SPSS version 27.0. Descriptive statistical analysis was done using numerical measures such as measures of central tendency and dispersion. The Pearson Chi Square test, correlation and linear regression analysis were performed to test association between the variables at the 0.05 level of significance. Are you assessing exclusive breastfeeding alone or what? Results: The mean age of respondents was 27.44 years (SD = 6.042 years) and the majority of the respondents were married (71.3%, n = 62). Forty-three percent of the respondents were self-employed while the rest were in formal government or private sector employment. Overall, 97.7% of the respondents had heard of exclusive breastfeeding, with health facilities being the most frequent source of information (64.4%). Attitude towards exclusive breastfeeding was generally positive. Fifty-eight percent of respondents exclusively breastfed while the rest were on mixed feeding. Seventy-one percent of respondents reported that their workplaces did not have breastfeeding facilities at work. Only 11.5% of the respondents reported having cultural beliefs restricting breastfeeding. Statistically significant associations were obtained from cross-tabulation analysis between respondent’s occupation and baby feeding type (p 0.001);workload and feeding type (0.024);as well as knowledge of EBF and feeding type (p 0.001). Conclusion: Majority of the respondents demonstrated good knowledge and positive attitude towards exclusive breastfeeding. This study recommends sensitization campaigns in communities to raise awareness about the importance of breastfeeding, and foster behaviour change that promotes breastfeeding.
文摘BACKGROUND Public employees worldwide are increasingly concerned about work anxiety and depression.Cognitive-behavioral career coaching has emerged as a promising strategy for addressing these mental health disorders,which can negatively impact on a person's overall well-being and performance.AIM To examine whether cognitive-behavioral career coaching reduces work anxiety and depression among Nigerian public employees.METHODS A total of 120 public employees(n=60)suffering from severe anxiety and depression were randomly assigned to the treatment or control groups in this study.Cognitive behavioral coaching was provided twice a week to those in the treatment group,whereas no treatment was given to those in the control group.As part of the study,the Hamilton Anxiety Rating Scales and Beck Depression Inventory were used to collect data.RESULTS Analysis of covariance of the data from participants indicates a significant effect of cognitive-behavioral career coaching on work anxiety and depression.CONCLUSION Insights into the underlying mechanisms by which cognitive behavior career coaching exerts its effects have been gained from this study.Also,the study has gathered valuable data that can inform future practice and guide the development of strategies for supporting mental health at work.