GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Poi...GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.展开更多
According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life...The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.展开更多
The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and exter...The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of p...<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of parameters during the operation of the magnetometer in orbit will have a great impact on the measurement accuracy. This paper studies the calibration method of magnetometer based on BP neural network, which reduces the influence of model error on calibration accuracy. Firstly, the error model of the magnetometer and the structural characteristics of the BP neural network are analyzed. Secondly, the number of hidden layers and hidden nodes is optimized. To avoid the problem of slow convergence and low accuracy of basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation training method to improve the training speed and prediction accuracy and realizes the on-orbit calibration of magnetometer through online training of the neural network. Finally, the effectiveness of the method is verified by numerical simulation. The results show that the neural network designed in this paper can effectively reduce the measurement error of magnetometer, while the online training can effectively reduce the error caused by the change of magnetometer parameters, and reduce the measurement error of magnetometer to less than 10 nT. </div>展开更多
Recently,with the rapid development of aerospace technology,an increasing number of spacecraft is being launched into space.Additionally,the demands for on-orbit servicing(OOS)missions are rapidly increasing.Space rob...Recently,with the rapid development of aerospace technology,an increasing number of spacecraft is being launched into space.Additionally,the demands for on-orbit servicing(OOS)missions are rapidly increasing.Space robotics is one of the most promising approaches for various OOS missions;thus,research on space robotics technologies for OOS has attracted increased attention from space agencies and universities worldwide.In this paper,we review the structures,ground verification,and onorbit kinematics calibration technologies of space robotic systems for OOS.First,we systematically summarize the development of space robotic systems and OOS programs based on space robotics.Then,according to the structures and applications,these systems are divided into three categories:large space manipulators,humanoid space robots,and small space manipulators.According to the capture mechanisms adopted,the end-effectors are systematically analyzed.Furthermore,the ground verification facilities used to simulate a microgravity environment are summarized and compared.Additionally,the on-orbit kinematics calibration technologies are discussed and analyzed compared with the kinematics calibration technologies of industrial manipulators with regard to four aspects.Finally,the development trends of the structures,verification,and calibration technologies are discussed to extend this review work.展开更多
Calibration coefficients validation is the foundation for ascertaining the sensor performance and carrying out the quantitative application.Based on the analysis of the differences between the calibration and validati...Calibration coefficients validation is the foundation for ascertaining the sensor performance and carrying out the quantitative application.Based on the analysis of the differences between the calibration and validation,two calibration coefficients validation methods were introduced in this paper.Taking the HJ-1A satellite CCD1 camera as an example,the uncertainties of calibration coefficients validation were analyzed.The calibration coefficients validation errors were simulated based on the measured data at an Inner Mongolia test site.The result showed that in the large view angle,the ground directional reflectance variation and the atmospheric path variation were the main error sources in calibration coefficients validation.The ground directional reflectance correction and atmospheric observation angle normalization should be carried out to improve the validation accuracy of calibration coefficients.展开更多
基金Independent Project of State Key Laboratory of Geo-information Engineering(SKLGIE2022-ZZ-01)The Youth Science Innovation Fund(No.2023-01)。
文摘GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.
文摘The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.
基金National Natural Science Foundation of China(No.41601492)SAST Foundation(No.SAST2016091)Development Program of China(No.2016YFB0501402)。
文摘The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
文摘<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of parameters during the operation of the magnetometer in orbit will have a great impact on the measurement accuracy. This paper studies the calibration method of magnetometer based on BP neural network, which reduces the influence of model error on calibration accuracy. Firstly, the error model of the magnetometer and the structural characteristics of the BP neural network are analyzed. Secondly, the number of hidden layers and hidden nodes is optimized. To avoid the problem of slow convergence and low accuracy of basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation training method to improve the training speed and prediction accuracy and realizes the on-orbit calibration of magnetometer through online training of the neural network. Finally, the effectiveness of the method is verified by numerical simulation. The results show that the neural network designed in this paper can effectively reduce the measurement error of magnetometer, while the online training can effectively reduce the error caused by the change of magnetometer parameters, and reduce the measurement error of magnetometer to less than 10 nT. </div>
基金the National Key R&D Program of China(Grant No.2017YFB1300400)the National Natural Science Foundation of China(Grant Nos.91748201 and 51775011)Beijing Natural Science Foundation(Gran No.3192017)。
文摘Recently,with the rapid development of aerospace technology,an increasing number of spacecraft is being launched into space.Additionally,the demands for on-orbit servicing(OOS)missions are rapidly increasing.Space robotics is one of the most promising approaches for various OOS missions;thus,research on space robotics technologies for OOS has attracted increased attention from space agencies and universities worldwide.In this paper,we review the structures,ground verification,and onorbit kinematics calibration technologies of space robotic systems for OOS.First,we systematically summarize the development of space robotic systems and OOS programs based on space robotics.Then,according to the structures and applications,these systems are divided into three categories:large space manipulators,humanoid space robots,and small space manipulators.According to the capture mechanisms adopted,the end-effectors are systematically analyzed.Furthermore,the ground verification facilities used to simulate a microgravity environment are summarized and compared.Additionally,the on-orbit kinematics calibration technologies are discussed and analyzed compared with the kinematics calibration technologies of industrial manipulators with regard to four aspects.Finally,the development trends of the structures,verification,and calibration technologies are discussed to extend this review work.
基金supported by the International Science and Technology Cooperation Program of China(Grant No.2008DFA21540)the National Hi-Tech Research and Development Program of China(Grant No.2006AA12Z113)+1 种基金the Chinese Defense Advance Research Program of Science and Technologythe Young Talents Filed Special Project of Institute of Remote Sensing and Application of Chinese Academy of Sciences
文摘Calibration coefficients validation is the foundation for ascertaining the sensor performance and carrying out the quantitative application.Based on the analysis of the differences between the calibration and validation,two calibration coefficients validation methods were introduced in this paper.Taking the HJ-1A satellite CCD1 camera as an example,the uncertainties of calibration coefficients validation were analyzed.The calibration coefficients validation errors were simulated based on the measured data at an Inner Mongolia test site.The result showed that in the large view angle,the ground directional reflectance variation and the atmospheric path variation were the main error sources in calibration coefficients validation.The ground directional reflectance correction and atmospheric observation angle normalization should be carried out to improve the validation accuracy of calibration coefficients.