Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoel...Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoelastic material is characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Frequency-domain solution methods for stochastic micro-vibration response analysis of the MRE-based structural systems are developed to derive the system frequency-response function matrices and the expressions of the velocity response spectrum. With these equations, the root-mean-square (RMS) velocity responses in terms of the one-third octave frequency band spectrum can be calculated. Further, the optimization problem of the complex moduli of the MRE cores is defined by minimizing the velocity response spectra and the RMS velocity responses through altering the applied magnetic fields. Simulation results illustrate the influences of MRE parameters on the RMS velocity responses and the high response reduction capacities of the MRE-based structures. In addition, the developed frequency-domain analysis methods are applicable to sandwich beam structures with arbitrary cores characterized by complex shear moduli under stochastic excitations described by power spectral density functions, and are valid for a wide frequency range.展开更多
Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and te...Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and testing equipment,and even causes irreversible damage to the equipment.Micro-vibration testing and response analysis are important to guide the vibration isolation design and ensure the stable operation of various precision equipment in the workshop.Parameters of Davidenkov model are fitted based on whale swarm optimization algorithm,and its applicability is verified.At the same time,taking the testing project of an electronic workshop raw land as an example,the micro-vibration response is analyzed.The results show that the nonlinear constitutive model constructed by whale optimization algorithm can simulate the dynamic nonlinear behavior of soil under the action of micro-vibration better.Compared with the traditional equivalent linearization method,the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response value.It can effectively suppress the“virtual resonance effect”produced by the equivalent linearization method.展开更多
To avoid the negative effects of disturbances on satellites,the characteristics of micro-vibration on flywheels are studied.Considering rotor imbalance,bearing imperfections and structural elasticity,the extended mode...To avoid the negative effects of disturbances on satellites,the characteristics of micro-vibration on flywheels are studied.Considering rotor imbalance,bearing imperfections and structural elasticity,the extended model of micro-vibration is established.In the feature extraction of micro-vibration,singular value decomposition combined with the improved Akaike Information Criterion(AIC-SVD)is applied to denoise.More robust and self-adaptable than the peak threshold denoising,AIC-SVD can effectively remove the noise components.Subsequently,the effective harmonic coefficients are extracted by the binning algorithm.The results show that the harmonic coefficients have great identification in frequency domain.Except for the fundamental frequency caused by rotor imbalance,the harmonics are also caused by the coupling of imperfections on bearing components.展开更多
This study investigated the vibration frequency in micro-vibration therapy (MVT) performed as a part of nursing care in Japan. We surveyed 31 nurses (25 women and 6 men) who performed MVT with accelerometers attached ...This study investigated the vibration frequency in micro-vibration therapy (MVT) performed as a part of nursing care in Japan. We surveyed 31 nurses (25 women and 6 men) who performed MVT with accelerometers attached to the backs of their hands, and the data obtained were analyzed. The mean vibration frequency was 8.3 Hz (standard deviation [SD]: 1.9 Hz) bilaterally, with a left-right difference of 0.8 Hz (SD: 1.1 Hz, right > left). Furthermore, vibration frequency was correlated with duration of MVT use (rs = 0.5, P < 0.01). The vibration frequency was higher in men (9.2 Hz, SD: 2.4 Hz) than in women (8.1 Hz, SD: 1.8 Hz), but this difference was not significant (P = 0.34). The vibrations of MVT are of a lower frequency than those of other vibration therapies.展开更多
According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
Sufficient sleep duration and good sleep quality are crucial to ensure normal physical and mental health, cognition and work performance for the common people, as well as astronauts. On-orbit sleep problem is very com...Sufficient sleep duration and good sleep quality are crucial to ensure normal physical and mental health, cognition and work performance for the common people, as well as astronauts. On-orbit sleep problem is very common among astronauts and has potential detrimental influences on the health of crewmembers and the safety of flight missions. Sleep in space is becoming a new medical research frontier. In this review we summarized on-orbit sleep problems of astronauts and six kinds of causes, and we presented the effects of lack of sleep on performance as well as mental and physical health, then we proposed seven kinds of countermeasures for sleep disturbance in spaceflight, including pharmacologic interventions, light treatment, crew selection and training, Traditional Chinese Medicine and so on. Furthermore, we discussed and oriented the prospect of researches on sleep in space.展开更多
A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are deri...A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.展开更多
The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and exter...The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.展开更多
The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life...The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative s...On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.展开更多
GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Poi...GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.展开更多
The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor ...The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor for DRL-CCL.And it verifies the function and performance in space target monitoring scene by the carrying experiment of Tianzhou-3 cargo spacecraft(TZ-3).The PMGD image segmentation method can segment the image into highly discrete and simple point tar-gets quickly,which reduces the generation of equivalences greatly and improves the real-time performance for DRL-CCL.Through parallel pipeline design,the storage of the streaming processor is optimized by 55%with no need for external me-mory,the logic is optimized by 60%,and the energy efficiency ratio is 12 times than that of the graphics processing unit,62 times than that of the digital signal proccessing,and 147 times than that of personal computers.Analyzing the results of 8756 images completed on-orbit,the speed is up to 5.88 FPS and the target detection rate is 100%.Our algorithm and implementation method meet the requirements of lightweight,high real-time,strong robustness,full-time,and stable operation in space irradia-tion environment.展开更多
Tiangong space station is a space station independently designed and developed by China.In order to build and operate the space station,it was necessary to make breakthroughs in many fields and master several key tech...Tiangong space station is a space station independently designed and developed by China.In order to build and operate the space station,it was necessary to make breakthroughs in many fields and master several key technologies,which were characterized over a long technological span and underwent difficult verifications.Therefore,in addition to ground verification,on-orbit flight tests of key technologies for the assembly,construction and operation of the space station were planned to be conducted used by the core module,taking into account the differences in the gravity environment between space and the Earth,in order to lay a foundation for the subsequent comprehensive assembly,construction and long-term on-orbit operation of the space station.In this paper,the mission characteristics of the space station are briefly introduced,along with the key technologies for the assembly and construction of the space station,and then the on-orbit verification tests are comprehensively introduced.展开更多
Micro-vibration is an important factor affecting the imaging quality and pointing accu-racy of the in-orbit satellites.To address the problem of micro-vibration compensation,a general summary for modeling,analysis,sup...Micro-vibration is an important factor affecting the imaging quality and pointing accu-racy of the in-orbit satellites.To address the problem of micro-vibration compensation,a general summary for modeling,analysis,suppression,and compensation approach should be outlined.In this review,micro-vibration characteristics and its impacts on the payloads are firstly analyzed.Afterwards,methods for micro-vibration measurement are provided.In detail,the principles and practical applications of these methods are introduced.Then,advanced technologies for micro-vibration suppression are summarized from micro-vibration source attenuation,transfer path opti-mization and sensitive load isolation.Two approaches have been found to be effective for micro-vibration compensation.The one is the Line-of-Sight(LOS)stabilization assisted with Inertial Ref-erence Unit(IRU).The other is using image restoration technology to remove the blur caused by platform jitter.The compensation technique and research status of the two techniques are reviewed.This work will provide researchers with technical guidelines for micro-vibration suppression.展开更多
There exists an increasing need for Milli-Arc-Seconds(MAS)accuracy pointing measurement for current and future space systems.To meet the 0.1″space pointing measurement accuracy requirements of spacecraft in future,th...There exists an increasing need for Milli-Arc-Seconds(MAS)accuracy pointing measurement for current and future space systems.To meet the 0.1″space pointing measurement accuracy requirements of spacecraft in future,the influence of spacecraft micro-vibration on a 0.1″Space Pointing Measuring Instrument(SPMI)is studied.A Quasi-Zero Stiffness Device(QZSD)with adaptive adjustment and variable stroke was proposed.Then,a series of micro-vibration experiments of the SPMI were carried out.The influence of the micro-vibration generated by Guidance Navigation Control(GNC)attitude control components under different attitudes on the SPMI was analyzed.Point spread function of image motion in micro-vibration was also derived.Further,the changes of image motion under the micro-vibration environment were evaluated by extracting the gray centroid of the images,and the experiment processes and results are deeply discussed.The results show that the firstorder frequency of the QZSD system is 0.114 Hz,and it is induced by a double pendulum system;the image motion of single flywheel spinning reached 0.015 pixels;whilst the image motion reached 0.03 pixels when three flywheels are combined spinning.These latest findings provide a beneficial theoretical and technical support for the development of spacecraft with 0·1″pointing accuracy.展开更多
In this paper, a soft active isolator(SAI) derived from a voice coil motor is studied to determine its abilities as a micro-vibration isolation device for sensitive satellite payloads. Firstly,the two most important...In this paper, a soft active isolator(SAI) derived from a voice coil motor is studied to determine its abilities as a micro-vibration isolation device for sensitive satellite payloads. Firstly,the two most important parts of the SAI, the mechanical unit and the low-noise driver, are designed and manufactured. Then, a rigid-flexible coupling dynamic model of the SAI is built, and a dynamic analysis is conducted. Furthermore, a controller with a sky-hook damper is designed. Finally,results from the performance tests of the mechanical/electronic parts and the isolation experiments are presented. The SAI attenuations are found to be more than 20 d B above 5 Hz, and the control effect is stable.展开更多
On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precisi...On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precision, while inducing no disturbances to its base attitude. To this end, decomposition of the target dynamics from the base dynamics is discussed, so that they can be considered as two independent subsystems. A reactionless nonlinear controller is presented, which ensures high-precision manipulation of the targets and that the base orientation is unchanged. This is achieved by combining the robust finite-time control with the reaction null space. Finally, the performance of the proposed method is examined by comparing it with that of a reactionless PD controller and a pure finite-time controller.展开更多
In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations...In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.展开更多
Based on the 1 550 nm all-fiber pulsed laser Doppler vibrometer(LDV) system independently developed by our laboratory, empirical mode decomposition(EMD) and optimally modified Log-spectral amplitude estimator(OM-LSA) ...Based on the 1 550 nm all-fiber pulsed laser Doppler vibrometer(LDV) system independently developed by our laboratory, empirical mode decomposition(EMD) and optimally modified Log-spectral amplitude estimator(OM-LSA) algorithms are associated to separate the speech micro-vibration from the target macro motion. This combined algorithm compensates for the weakness of the EMD algorithm in denoising and the inability of the OM-LSA algorithm on signal separation, achieving separation and simultaneous acquisition of the macro motion and speech micro-vibration of a target. The experimental results indicate that using this combined algorithm, the LDV system can functionally operate within 30 m and gain a 4.21 d B promotion in the signal-to-noise ratio(SNR) relative to a traditional OM-LSA algorithm.展开更多
基金Research Grants Council of the Hong Kong Special Administrative Region,China Under Grant No.PolyU 5252/07EThe Hong Kong Polytechnic University through the Development of Niche Areas Programme Under Grant No.1-BB95Zhejiang Provincial Natural Science Foundation of China Under Grant No.Y607087)
文摘Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoelastic material is characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Frequency-domain solution methods for stochastic micro-vibration response analysis of the MRE-based structural systems are developed to derive the system frequency-response function matrices and the expressions of the velocity response spectrum. With these equations, the root-mean-square (RMS) velocity responses in terms of the one-third octave frequency band spectrum can be calculated. Further, the optimization problem of the complex moduli of the MRE cores is defined by minimizing the velocity response spectra and the RMS velocity responses through altering the applied magnetic fields. Simulation results illustrate the influences of MRE parameters on the RMS velocity responses and the high response reduction capacities of the MRE-based structures. In addition, the developed frequency-domain analysis methods are applicable to sandwich beam structures with arbitrary cores characterized by complex shear moduli under stochastic excitations described by power spectral density functions, and are valid for a wide frequency range.
文摘Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and testing equipment,and even causes irreversible damage to the equipment.Micro-vibration testing and response analysis are important to guide the vibration isolation design and ensure the stable operation of various precision equipment in the workshop.Parameters of Davidenkov model are fitted based on whale swarm optimization algorithm,and its applicability is verified.At the same time,taking the testing project of an electronic workshop raw land as an example,the micro-vibration response is analyzed.The results show that the nonlinear constitutive model constructed by whale optimization algorithm can simulate the dynamic nonlinear behavior of soil under the action of micro-vibration better.Compared with the traditional equivalent linearization method,the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response value.It can effectively suppress the“virtual resonance effect”produced by the equivalent linearization method.
基金National Natural Science Foundation of China(No.U1831123)Fundamental Research Funds for the Central Universities,China(No.2232017A3-04)。
文摘To avoid the negative effects of disturbances on satellites,the characteristics of micro-vibration on flywheels are studied.Considering rotor imbalance,bearing imperfections and structural elasticity,the extended model of micro-vibration is established.In the feature extraction of micro-vibration,singular value decomposition combined with the improved Akaike Information Criterion(AIC-SVD)is applied to denoise.More robust and self-adaptable than the peak threshold denoising,AIC-SVD can effectively remove the noise components.Subsequently,the effective harmonic coefficients are extracted by the binning algorithm.The results show that the harmonic coefficients have great identification in frequency domain.Except for the fundamental frequency caused by rotor imbalance,the harmonics are also caused by the coupling of imperfections on bearing components.
文摘This study investigated the vibration frequency in micro-vibration therapy (MVT) performed as a part of nursing care in Japan. We surveyed 31 nurses (25 women and 6 men) who performed MVT with accelerometers attached to the backs of their hands, and the data obtained were analyzed. The mean vibration frequency was 8.3 Hz (standard deviation [SD]: 1.9 Hz) bilaterally, with a left-right difference of 0.8 Hz (SD: 1.1 Hz, right > left). Furthermore, vibration frequency was correlated with duration of MVT use (rs = 0.5, P < 0.01). The vibration frequency was higher in men (9.2 Hz, SD: 2.4 Hz) than in women (8.1 Hz, SD: 1.8 Hz), but this difference was not significant (P = 0.34). The vibrations of MVT are of a lower frequency than those of other vibration therapies.
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.
基金supported by the Manned Spaceflight Program of China,the Advanced Space Medio-Engineering Research Project of China(2014SY54A0001)
文摘Sufficient sleep duration and good sleep quality are crucial to ensure normal physical and mental health, cognition and work performance for the common people, as well as astronauts. On-orbit sleep problem is very common among astronauts and has potential detrimental influences on the health of crewmembers and the safety of flight missions. Sleep in space is becoming a new medical research frontier. In this review we summarized on-orbit sleep problems of astronauts and six kinds of causes, and we presented the effects of lack of sleep on performance as well as mental and physical health, then we proposed seven kinds of countermeasures for sleep disturbance in spaceflight, including pharmacologic interventions, light treatment, crew selection and training, Traditional Chinese Medicine and so on. Furthermore, we discussed and oriented the prospect of researches on sleep in space.
基金supported by the National Natural Science Foundation of China (11102018)
文摘A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.
基金National Natural Science Foundation of China(No.41601492)SAST Foundation(No.SAST2016091)Development Program of China(No.2016YFB0501402)。
文摘The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.
文摘The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61973153)
文摘On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.
基金Independent Project of State Key Laboratory of Geo-information Engineering(SKLGIE2022-ZZ-01)The Youth Science Innovation Fund(No.2023-01)。
文摘GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.
文摘The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor for DRL-CCL.And it verifies the function and performance in space target monitoring scene by the carrying experiment of Tianzhou-3 cargo spacecraft(TZ-3).The PMGD image segmentation method can segment the image into highly discrete and simple point tar-gets quickly,which reduces the generation of equivalences greatly and improves the real-time performance for DRL-CCL.Through parallel pipeline design,the storage of the streaming processor is optimized by 55%with no need for external me-mory,the logic is optimized by 60%,and the energy efficiency ratio is 12 times than that of the graphics processing unit,62 times than that of the digital signal proccessing,and 147 times than that of personal computers.Analyzing the results of 8756 images completed on-orbit,the speed is up to 5.88 FPS and the target detection rate is 100%.Our algorithm and implementation method meet the requirements of lightweight,high real-time,strong robustness,full-time,and stable operation in space irradia-tion environment.
文摘Tiangong space station is a space station independently designed and developed by China.In order to build and operate the space station,it was necessary to make breakthroughs in many fields and master several key technologies,which were characterized over a long technological span and underwent difficult verifications.Therefore,in addition to ground verification,on-orbit flight tests of key technologies for the assembly,construction and operation of the space station were planned to be conducted used by the core module,taking into account the differences in the gravity environment between space and the Earth,in order to lay a foundation for the subsequent comprehensive assembly,construction and long-term on-orbit operation of the space station.In this paper,the mission characteristics of the space station are briefly introduced,along with the key technologies for the assembly and construction of the space station,and then the on-orbit verification tests are comprehensively introduced.
基金supported by the National Natural Science Foundation of China (No.62203322)the China Postdoctoral Science Foundation (No.2022M712372)the Enlisting and Leading Program of the Taihu Laboratory of Deepsea Technological Science,China (No.2022JBGS03001).
文摘Micro-vibration is an important factor affecting the imaging quality and pointing accu-racy of the in-orbit satellites.To address the problem of micro-vibration compensation,a general summary for modeling,analysis,suppression,and compensation approach should be outlined.In this review,micro-vibration characteristics and its impacts on the payloads are firstly analyzed.Afterwards,methods for micro-vibration measurement are provided.In detail,the principles and practical applications of these methods are introduced.Then,advanced technologies for micro-vibration suppression are summarized from micro-vibration source attenuation,transfer path opti-mization and sensitive load isolation.Two approaches have been found to be effective for micro-vibration compensation.The one is the Line-of-Sight(LOS)stabilization assisted with Inertial Ref-erence Unit(IRU).The other is using image restoration technology to remove the blur caused by platform jitter.The compensation technique and research status of the two techniques are reviewed.This work will provide researchers with technical guidelines for micro-vibration suppression.
基金the support from the National Natural Science Foundation of China(No.51905034,52275083)。
文摘There exists an increasing need for Milli-Arc-Seconds(MAS)accuracy pointing measurement for current and future space systems.To meet the 0.1″space pointing measurement accuracy requirements of spacecraft in future,the influence of spacecraft micro-vibration on a 0.1″Space Pointing Measuring Instrument(SPMI)is studied.A Quasi-Zero Stiffness Device(QZSD)with adaptive adjustment and variable stroke was proposed.Then,a series of micro-vibration experiments of the SPMI were carried out.The influence of the micro-vibration generated by Guidance Navigation Control(GNC)attitude control components under different attitudes on the SPMI was analyzed.Point spread function of image motion in micro-vibration was also derived.Further,the changes of image motion under the micro-vibration environment were evaluated by extracting the gray centroid of the images,and the experiment processes and results are deeply discussed.The results show that the firstorder frequency of the QZSD system is 0.114 Hz,and it is induced by a double pendulum system;the image motion of single flywheel spinning reached 0.015 pixels;whilst the image motion reached 0.03 pixels when three flywheels are combined spinning.These latest findings provide a beneficial theoretical and technical support for the development of spacecraft with 0·1″pointing accuracy.
基金co-supported by the National Natural Science Foundation of China (No. 11302010)Shanghai Institute of Satellite Engineering (No. HT-2010-0753)
文摘In this paper, a soft active isolator(SAI) derived from a voice coil motor is studied to determine its abilities as a micro-vibration isolation device for sensitive satellite payloads. Firstly,the two most important parts of the SAI, the mechanical unit and the low-noise driver, are designed and manufactured. Then, a rigid-flexible coupling dynamic model of the SAI is built, and a dynamic analysis is conducted. Furthermore, a controller with a sky-hook damper is designed. Finally,results from the performance tests of the mechanical/electronic parts and the isolation experiments are presented. The SAI attenuations are found to be more than 20 d B above 5 Hz, and the control effect is stable.
文摘On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precision, while inducing no disturbances to its base attitude. To this end, decomposition of the target dynamics from the base dynamics is discussed, so that they can be considered as two independent subsystems. A reactionless nonlinear controller is presented, which ensures high-precision manipulation of the targets and that the base orientation is unchanged. This is achieved by combining the robust finite-time control with the reaction null space. Finally, the performance of the proposed method is examined by comparing it with that of a reactionless PD controller and a pure finite-time controller.
文摘In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.
基金supported by the National Natural Science Foundation of China (No.61805234)the Key Research Program of Frontier Science,CAS (No.QYZDB-SSWSLH014)the Foundation of State Key Laboratory of Laser Interaction with Matter (No.SKLLIM1704)。
文摘Based on the 1 550 nm all-fiber pulsed laser Doppler vibrometer(LDV) system independently developed by our laboratory, empirical mode decomposition(EMD) and optimally modified Log-spectral amplitude estimator(OM-LSA) algorithms are associated to separate the speech micro-vibration from the target macro motion. This combined algorithm compensates for the weakness of the EMD algorithm in denoising and the inability of the OM-LSA algorithm on signal separation, achieving separation and simultaneous acquisition of the macro motion and speech micro-vibration of a target. The experimental results indicate that using this combined algorithm, the LDV system can functionally operate within 30 m and gain a 4.21 d B promotion in the signal-to-noise ratio(SNR) relative to a traditional OM-LSA algorithm.