Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterat...Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .展开更多
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a...The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .展开更多
Marchenko imaging obtains the subsurface reflectors using one-way Green’s functions,which are retrieved by solving the Marchenko equation.This method generates an image that is free of spurious artifacts due to inter...Marchenko imaging obtains the subsurface reflectors using one-way Green’s functions,which are retrieved by solving the Marchenko equation.This method generates an image that is free of spurious artifacts due to internal multiples.The Marchenko imaging method is a target-oriented technique;thus,it can image a user specified area.In the traditional Marchenko method,an accurate velocity model is critical for estimating direct waves from imaging points to the surface.An error in the velocity model results in the inaccurate estimation of direct waves.In turn,this leads to errors in computation of one-way Green’s functions,which then affects the final Marchenko images.To solve this problem,in this paper,we propose a self-adaptive traveltime updating technique based on the principle of equal traveltime to improve the Marchenko imaging method.The proposed method calculates the time shift of direct waves caused by the error in the velocity model,and corrects the wrong direct wave according to the time shift and reconstructs the correct Green’s functions.The proposed method improves the results of imaging using an inaccurate velocity model.By comparing the results from traditional Marchenko and the new method using synthetic data experiments,we demonstrated that the adaptive traveltime updating Marchenko imaging method could restore the image of geological structures to their true positions.展开更多
Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are unavoidably corrupted with uncorrelated n...Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are unavoidably corrupted with uncorrelated noise content. In this paper, reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. A numerical example is employed to illustrate the applicability of the proposed method. The result indicates that the present method is effective.展开更多
某一特定场地的岩土力学参数在地质作用下普遍呈现固有的不确定性,融合现场观测数据进行概率反分析可有效缩减这一不确定性。虽然基于子集模拟的贝叶斯更新(Bayesian Updating with Subset simulation,简称BUS)方法可以将等量场地信息...某一特定场地的岩土力学参数在地质作用下普遍呈现固有的不确定性,融合现场观测数据进行概率反分析可有效缩减这一不确定性。虽然基于子集模拟的贝叶斯更新(Bayesian Updating with Subset simulation,简称BUS)方法可以将等量场地信息的高维概率反分析问题转化为等效的结构可靠度问题,但是当现场观测数据增多时,构建的似然函数值会变得非常小,甚至低于计算机浮点运算精度,会严重影响概率反分析计算效率与精度。为此,提出了一种基于并联系统可靠度分析的改进BUS方法,从基于乔列斯基分解的中点法出发,将接受率低的总失效区域分解为多个接受率高的子失效区域,从而避免因融合大量现场观测数据引起的“维度灾难”问题,实现对边坡岩土力学参数的准确概率反分析。最后,通过一不排水饱和黏土边坡案例验证了提出方法的有效性,结果表明提出的方法能够融合大量钻孔数据和边坡服役状态等观测信息高效进行岩土力学参数概率反分析及边坡可靠度评估,为高维空间变异参数概率反分析和边坡可靠度评估提供了一种有效的工具。展开更多
基金supported by the Key Project of the National Natural Science Foundation of China (11132007)
文摘Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .
基金National Natural Science Foundation of China Under Grant No.50575101Transportation Science Research Item of Jiangsu Province Under Grant No.06Y20
文摘The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .
基金supported by the National Natural Science Foundation of China(No.41874167)the National Science and Technology Major Project of China(No.2017YFB0202904)the National Natural Science Foundation of China(No.41904130)。
文摘Marchenko imaging obtains the subsurface reflectors using one-way Green’s functions,which are retrieved by solving the Marchenko equation.This method generates an image that is free of spurious artifacts due to internal multiples.The Marchenko imaging method is a target-oriented technique;thus,it can image a user specified area.In the traditional Marchenko method,an accurate velocity model is critical for estimating direct waves from imaging points to the surface.An error in the velocity model results in the inaccurate estimation of direct waves.In turn,this leads to errors in computation of one-way Green’s functions,which then affects the final Marchenko images.To solve this problem,in this paper,we propose a self-adaptive traveltime updating technique based on the principle of equal traveltime to improve the Marchenko imaging method.The proposed method calculates the time shift of direct waves caused by the error in the velocity model,and corrects the wrong direct wave according to the time shift and reconstructs the correct Green’s functions.The proposed method improves the results of imaging using an inaccurate velocity model.By comparing the results from traditional Marchenko and the new method using synthetic data experiments,we demonstrated that the adaptive traveltime updating Marchenko imaging method could restore the image of geological structures to their true positions.
文摘Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are unavoidably corrupted with uncorrelated noise content. In this paper, reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. A numerical example is employed to illustrate the applicability of the proposed method. The result indicates that the present method is effective.
文摘某一特定场地的岩土力学参数在地质作用下普遍呈现固有的不确定性,融合现场观测数据进行概率反分析可有效缩减这一不确定性。虽然基于子集模拟的贝叶斯更新(Bayesian Updating with Subset simulation,简称BUS)方法可以将等量场地信息的高维概率反分析问题转化为等效的结构可靠度问题,但是当现场观测数据增多时,构建的似然函数值会变得非常小,甚至低于计算机浮点运算精度,会严重影响概率反分析计算效率与精度。为此,提出了一种基于并联系统可靠度分析的改进BUS方法,从基于乔列斯基分解的中点法出发,将接受率低的总失效区域分解为多个接受率高的子失效区域,从而避免因融合大量现场观测数据引起的“维度灾难”问题,实现对边坡岩土力学参数的准确概率反分析。最后,通过一不排水饱和黏土边坡案例验证了提出方法的有效性,结果表明提出的方法能够融合大量钻孔数据和边坡服役状态等观测信息高效进行岩土力学参数概率反分析及边坡可靠度评估,为高维空间变异参数概率反分析和边坡可靠度评估提供了一种有效的工具。