To improve the semi-empirical model, the slip sinkage effect is analyzed based on the real vehicle test. A dynamic testing system is used to gain the dynamic responses of wheel-soil interactions, The Gauss-Newton algo...To improve the semi-empirical model, the slip sinkage effect is analyzed based on the real vehicle test. A dynamic testing system is used to gain the dynamic responses of wheel-soil interactions, The Gauss-Newton algorithm is adopted to estimate the undetermined parameters involved in the slip sinkage models. Wong's original model is compared with three typical slip sinkage models on the prediction performance of a drawbar pull. The maximum error rate, root mean squared error and correlation coefficient are utilized to evaluate the performance. The results indicate that the slip sinkage models outperform Wong's model and greatly improve the prediction accuracy. Lyasko's model is confirmed as an outstanding one for its comprehensive performance. Hence, the existence of the slip sinkage effect is validated. Lyasko's model is selected as an optimal one for the practical evaluation of military vehicle trafficability.展开更多
In present-day highly-automated vehicles, there are occasions when the driving system disengages and the human driver is required to take-over. This is of great importance to a vehicle's safety and ride comfort. I...In present-day highly-automated vehicles, there are occasions when the driving system disengages and the human driver is required to take-over. This is of great importance to a vehicle's safety and ride comfort. In the U.S state of California, the Autonomous Vehicle Testing Regulations require every manufacturer testing autonomous vehicles on public roads to submit an annual report summarizing the disengagements of the technology experienced during testing. On 1 January 2016,seven manufacturers submitted their first disengagement reports:Bosch, Delphi, Google, Nissan, Mercedes-Benz, Volkswagen, and Tesla Motors. This work analyses the data from these disengagement reports with the aim of gaining abetter understanding of the situations in which a driver is required to takeover, as this is potentially useful in improving the Society of Automotive Engineers(SAE) Level 2 and Level 3 automation technologies.Disengagement events from testing are classified into different groups based on attributes and the causes of disengagement are investigated and compared in detail. The mechanisms and time taken for take-over transition occurred in disengagements are studied. Finally, recommendations for OEMs, manufacturers, and government organizations are also discussed.展开更多
This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong...This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test. And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions. Rotation control motion was simulated to verify spatial model proposed. Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment, and accomplish some more challengeable and practical missions.展开更多
A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle c...A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle collision avoidance(MVCA)algorithm is proposed by extending the reciprocal n-body collision avoidance method. MVCA enables the intelligent vehicles to choose their destinations and control inputs independently,without needing to negotiate with each other or with the coordinator. Compared to the centralized trajectory-planning algorithm, MVCA reduces computation costs and greatly improves the robustness of the system. Because the destination of each intelligent vehicle can be regarded as private, which can be protected by MVCA, at the same time MVCA can provide a real-time trajectory planning for intelligent vehicles. Therefore,MVCA can better improve the safety of intelligent vehicles. The simulation was conducted in MATLAB, including crossroads scene simulation and circular exchange position simulation. The results show that MVCA behaves safely and reliably. The effects of latency and packet loss on MVCA are also statistically investigated through theoretically formulating broadcasting process based on one-dimensional Markov chain. The results uncover that the tolerant delay should not exceed the half of deciding cycle of trajectory planning, and shortening the sending interval could alleviate the negative effects caused by the packet loss to an extent. The cases of short delay(< 100100 ms) and low packet loss(< 5%) can bring little influence to those trajectory planning algorithms that only depend on V2 V to sense the context, but the unpredictable collision may occur if the delay and packet loss are further worsened. The MVCA was also tested by a real intelligent vehicle, the test results prove the operability of MVCA.展开更多
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite...The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.展开更多
The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient i...The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient in the detection but also difficult to guarantee the data accuracy. In order to improve the detection efficiency and accuracy, a new testing system is designed by Labview. The total test time can be further reduced by about 75% compared with the results of the manual detection. In this paper, the three-parameter sine wave curve-fit algorithm theory is applied to the phase delay detection of the current sensor sampling circuit on the DSCCB. This method solves the problem of big error in the phase delay detection.展开更多
The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test ...The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test methods as well as driving cycles are reviewed.An electric vehicle model that consists of EV dynamics model,battery model and electric motor model is built.The dynamic characteristics of the battery in frequency domain are analyzed.Based on the EV model and the frequency domain characteristics of the battery,a driving cycle test procedure of EV battery is proposed.The battery test procedure is able to reflect the real-world characteristics of EV batteries,and can be used as a universal EV battery test method.展开更多
Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have ga...Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.展开更多
The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting th...The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting these heavy-duty diesel engines to run on natural gas-diesel dual-fuel, a transient engine duty cycle representing the real-world engine working conditions is necessary. In this paper, a methodology is proposed, and a target engine duty cycle comprising of 2231 seconds is developed from on-road data collected from 11 on-road sand and water hauling trucks. The similarity of inherent characteristics of the developed cycle and the base trip observed is evidenced by the 2.05% error of standard deviation and average values for normalized engine speed and engine torque. Our results show that the proposed approach is expected to produce a representative cycle of in-use heavy-duty engine behavior.展开更多
Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only th...Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only the emissions limitation of vehicles, but also testing instruments and methods. Test car must be operated on the chassis dynamometer and data must be collect ed and analyzed with prescriptive exhaust analysis system as well. The mass of harmful exhaust gas, containing the concentration and volume of emis sion, which is independent from the model of automobile and engine, can be used as a criterion to evaluate the pollution of an automobile. Constant Volume Sampl e System (CVS) is used to measure vehicle emissions, but it is too expensive to apply extensively. The Vehicle Mass Analysis System(Vmas), a new vehicle exhaust mass analysis system produced in USA late 1990s,is used to test and analyze veh icle exhaust. As a test instrument, it has the virtue of cheapness and easy mana geability. In this paper, Vmas is used to measure the emissions of a light truck CA1020F. A ccording to 15 running modes of Vehicle Exhaust Legislation, the test car is ope rated on the chassis dynamometer and data are collected and analyzed with Vmas. The test results show that it is viable to measure and evaluate automobile emiss ion with Vmas. Most of HC exhaust is produced when the car is decelerating. The major factor that influences the mass of HC emission is the sudden decrease of e ngine load causing incomplete combustion in decelerating mode. Test results indi cate CO and NOx are mainly produced in the process of increasing load. The forme r reason is incomplete combustion and the latter is high burning temperature cau sed by the increasing load. The methods of reducing automobile emission are also discussed in this paper.展开更多
The theory of vehicle's correlation tests was discussed and the correlation test mathematical model was created. According to the damage theory, the correlation equation was brought up. The method to solove it was...The theory of vehicle's correlation tests was discussed and the correlation test mathematical model was created. According to the damage theory, the correlation equation was brought up. The method to solove it was given. The text gives the theory basis of vehicle's correlation tests. The results can be used to give the vehicle's test designation and to make the test to fit the actual environments. Besides that, the methods give acceleration and strengthen effects.展开更多
Car fleets escorted by police along Chang’an Avenue are not a rare sight for Beijing residents, who are accustomed to the practice when leaders of foreign states visit the capital of China.
The LM-6 A new generation solid-liquid strap-on launch vehicle has the structural dynamic characteristics of lower frequencies,denser modes and coupling modes in longitudinal,bending and torsion modal space.During the...The LM-6 A new generation solid-liquid strap-on launch vehicle has the structural dynamic characteristics of lower frequencies,denser modes and coupling modes in longitudinal,bending and torsion modal space.During the development phase of LM-6 A,modal tests of partial stacks and the full vehicle were designed to obtain the structural dynamic properties.The structural dynamic models using the finite element method(FEM)have been verified and calibrated based on the modal test data.This paper describes the pre-test predictions and test execution,and details the comparison between the pre-test predictions and the test data.The successful maiden flight of LM-6 A further confirmed the effectiveness of structural dynamic modeling and modal test for LM-6 A.展开更多
The Ministry of Land, Infrastructure and Transport of Korea introduced the ITS system performance evaluation about six and a half years ago. The main purpose is to make sure that accurate and reliable real-time traffi...The Ministry of Land, Infrastructure and Transport of Korea introduced the ITS system performance evaluation about six and a half years ago. The main purpose is to make sure that accurate and reliable real-time traffic data are collected from the ITS system installed. There are three types of performance evaluations, which are Quality Certification Test, Pre-Delivery Test and Periodic Check in Operation. In this paper the accuracy levels of vehicle detectors commonly used in Korea are analyzed based on the results of quality certification tests conducted during 2008-2012. The test items consist of volume, speed and occupancy. The analysis shows that loop detectors have the best levels of accuracy in all three test items and their levels of accuracy have been steady. Video image detectors do not have so good levels of accuracy as loop detectors, but the levels of accuracy have improved as time passes. Radar detectors do not have good levels of accuracy. However, their levels of accuracy have improved as time passes. The last vehicle detectors, geomagnetism detectors have the worst accuracy in the occupancy item.展开更多
To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motio...To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motion parameters is studied. According to the characteristics of the output signals of the IMU and the GPS, without the IMU synchronization signal, the synchronization circuit based on CPLD is designed and developed, which need not alter the configurations of the IMU and GPS. Experiments of measuring vehicle motion parameters, which rely on the synchronization circuit to realize IMU/GPS data synchronization, are made. The driving routes in experiments comprise a curve and a straight line. Experimental results show that the designed circuit can accurately measure the synchronization time difference and the IMU period, and can effectively solve the data synchronization in IMU/GPS integration. Furthermore, the IMU/GPS integrated measurement system based on the synchronization circuit can measure and calculate many vehicle motion parameters in high frequency mode.展开更多
Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviat...Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.展开更多
Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of...Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of wind,and temperature.Besides these environmental conditions,tire mass of vehicles may change the measured valnes when traffic-in- duced vibration is used as a source of AVT tor bridges.The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges;(1)three-span suspension bridge(128m+404m+128m),(2) five-span continuous steel box girder bridge(59m+3@ 95m+59m),(3)simply supported plate girder bridge(46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field.These recor- ded histories are divided into individual vibrations and are combined into two groups aceording to the level of vibration;one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars.Separate processing of the two groups of signals shows that,for the middle and long-span bridges,the difference can be hardly detected,but,for the short span bridges whose mass is relatively small,the measured natural frequencies can change up to 5.4%.展开更多
The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the ...The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15+EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are -0.42—2.99, -0.32 —0.81 and -0.11—11 with FTP75 testing, 0.11—1.29, -0.77—0.64 and 0.47—10.50 with Beijing 1997 testing and 0.25—1.83, 0.09—0.75 and -0.58—1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI+TWC vehicles' pollution emission factors decrease with different degree. The retrofit vehicle(Santana) will reduce 4.44%—58.44% CO, -4.95%—36.79% NOx, -32.32%—33.89% HC, and -9.39%—14.29% fuel consumption, and especially that the MPI+TWC vehicle will decrease CO by 82.48%—91.76%, NOx by 44.87%—92.79%, HC by 90.00%—93.89% and fuel consumption by 5.44%—10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.展开更多
基金The National Natural Science Foundation of China(No.51305078)the Science and Technology Plan of Suzhou City(No.SYG201303)
文摘To improve the semi-empirical model, the slip sinkage effect is analyzed based on the real vehicle test. A dynamic testing system is used to gain the dynamic responses of wheel-soil interactions, The Gauss-Newton algorithm is adopted to estimate the undetermined parameters involved in the slip sinkage models. Wong's original model is compared with three typical slip sinkage models on the prediction performance of a drawbar pull. The maximum error rate, root mean squared error and correlation coefficient are utilized to evaluate the performance. The results indicate that the slip sinkage models outperform Wong's model and greatly improve the prediction accuracy. Lyasko's model is confirmed as an outstanding one for its comprehensive performance. Hence, the existence of the slip sinkage effect is validated. Lyasko's model is selected as an optimal one for the practical evaluation of military vehicle trafficability.
基金supported by Jaguar Land Roverthe UK-EPSRC grant EP/N012089/1 as part of the jointly funded Towards Autonomy:Smart and Connected Control(TASCC)Programme
文摘In present-day highly-automated vehicles, there are occasions when the driving system disengages and the human driver is required to take-over. This is of great importance to a vehicle's safety and ride comfort. In the U.S state of California, the Autonomous Vehicle Testing Regulations require every manufacturer testing autonomous vehicles on public roads to submit an annual report summarizing the disengagements of the technology experienced during testing. On 1 January 2016,seven manufacturers submitted their first disengagement reports:Bosch, Delphi, Google, Nissan, Mercedes-Benz, Volkswagen, and Tesla Motors. This work analyses the data from these disengagement reports with the aim of gaining abetter understanding of the situations in which a driver is required to takeover, as this is potentially useful in improving the Society of Automotive Engineers(SAE) Level 2 and Level 3 automation technologies.Disengagement events from testing are classified into different groups based on attributes and the causes of disengagement are investigated and compared in detail. The mechanisms and time taken for take-over transition occurred in disengagements are studied. Finally, recommendations for OEMs, manufacturers, and government organizations are also discussed.
基金financially supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2008AA092301)
文摘This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test. And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions. Rotation control motion was simulated to verify spatial model proposed. Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment, and accomplish some more challengeable and practical missions.
基金supported by the National Natural Science Foundation of China(61572229,6171101066)the Key Scientific and Technological Projects for Jilin Province Development Plan(20170204074GX,20180201068GX)Jilin Provincial International Cooperation Foundation(20180414015GH)。
文摘A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle collision avoidance(MVCA)algorithm is proposed by extending the reciprocal n-body collision avoidance method. MVCA enables the intelligent vehicles to choose their destinations and control inputs independently,without needing to negotiate with each other or with the coordinator. Compared to the centralized trajectory-planning algorithm, MVCA reduces computation costs and greatly improves the robustness of the system. Because the destination of each intelligent vehicle can be regarded as private, which can be protected by MVCA, at the same time MVCA can provide a real-time trajectory planning for intelligent vehicles. Therefore,MVCA can better improve the safety of intelligent vehicles. The simulation was conducted in MATLAB, including crossroads scene simulation and circular exchange position simulation. The results show that MVCA behaves safely and reliably. The effects of latency and packet loss on MVCA are also statistically investigated through theoretically formulating broadcasting process based on one-dimensional Markov chain. The results uncover that the tolerant delay should not exceed the half of deciding cycle of trajectory planning, and shortening the sending interval could alleviate the negative effects caused by the packet loss to an extent. The cases of short delay(< 100100 ms) and low packet loss(< 5%) can bring little influence to those trajectory planning algorithms that only depend on V2 V to sense the context, but the unpredictable collision may occur if the delay and packet loss are further worsened. The MVCA was also tested by a real intelligent vehicle, the test results prove the operability of MVCA.
基金Project(51278104)supported by the National Natural Science Foundation of ChinaProject(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,China+1 种基金Project(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.
基金"863"program-saving and new energy vehicles of major projects funded project(2008AA11A154)
文摘The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient in the detection but also difficult to guarantee the data accuracy. In order to improve the detection efficiency and accuracy, a new testing system is designed by Labview. The total test time can be further reduced by about 75% compared with the results of the manual detection. In this paper, the three-parameter sine wave curve-fit algorithm theory is applied to the phase delay detection of the current sensor sampling circuit on the DSCCB. This method solves the problem of big error in the phase delay detection.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA05A109,2008AA11A104)International S&T Cooperation Program of China(ISTCP)(No.2011DFA70570,2010DFA72760)
文摘The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test methods as well as driving cycles are reviewed.An electric vehicle model that consists of EV dynamics model,battery model and electric motor model is built.The dynamic characteristics of the battery in frequency domain are analyzed.Based on the EV model and the frequency domain characteristics of the battery,a driving cycle test procedure of EV battery is proposed.The battery test procedure is able to reflect the real-world characteristics of EV batteries,and can be used as a universal EV battery test method.
文摘Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.
文摘The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting these heavy-duty diesel engines to run on natural gas-diesel dual-fuel, a transient engine duty cycle representing the real-world engine working conditions is necessary. In this paper, a methodology is proposed, and a target engine duty cycle comprising of 2231 seconds is developed from on-road data collected from 11 on-road sand and water hauling trucks. The similarity of inherent characteristics of the developed cycle and the base trip observed is evidenced by the 2.05% error of standard deviation and average values for normalized engine speed and engine torque. Our results show that the proposed approach is expected to produce a representative cycle of in-use heavy-duty engine behavior.
文摘Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only the emissions limitation of vehicles, but also testing instruments and methods. Test car must be operated on the chassis dynamometer and data must be collect ed and analyzed with prescriptive exhaust analysis system as well. The mass of harmful exhaust gas, containing the concentration and volume of emis sion, which is independent from the model of automobile and engine, can be used as a criterion to evaluate the pollution of an automobile. Constant Volume Sampl e System (CVS) is used to measure vehicle emissions, but it is too expensive to apply extensively. The Vehicle Mass Analysis System(Vmas), a new vehicle exhaust mass analysis system produced in USA late 1990s,is used to test and analyze veh icle exhaust. As a test instrument, it has the virtue of cheapness and easy mana geability. In this paper, Vmas is used to measure the emissions of a light truck CA1020F. A ccording to 15 running modes of Vehicle Exhaust Legislation, the test car is ope rated on the chassis dynamometer and data are collected and analyzed with Vmas. The test results show that it is viable to measure and evaluate automobile emiss ion with Vmas. Most of HC exhaust is produced when the car is decelerating. The major factor that influences the mass of HC emission is the sudden decrease of e ngine load causing incomplete combustion in decelerating mode. Test results indi cate CO and NOx are mainly produced in the process of increasing load. The forme r reason is incomplete combustion and the latter is high burning temperature cau sed by the increasing load. The methods of reducing automobile emission are also discussed in this paper.
文摘The theory of vehicle's correlation tests was discussed and the correlation test mathematical model was created. According to the damage theory, the correlation equation was brought up. The method to solove it was given. The text gives the theory basis of vehicle's correlation tests. The results can be used to give the vehicle's test designation and to make the test to fit the actual environments. Besides that, the methods give acceleration and strengthen effects.
文摘Car fleets escorted by police along Chang’an Avenue are not a rare sight for Beijing residents, who are accustomed to the practice when leaders of foreign states visit the capital of China.
文摘The LM-6 A new generation solid-liquid strap-on launch vehicle has the structural dynamic characteristics of lower frequencies,denser modes and coupling modes in longitudinal,bending and torsion modal space.During the development phase of LM-6 A,modal tests of partial stacks and the full vehicle were designed to obtain the structural dynamic properties.The structural dynamic models using the finite element method(FEM)have been verified and calibrated based on the modal test data.This paper describes the pre-test predictions and test execution,and details the comparison between the pre-test predictions and the test data.The successful maiden flight of LM-6 A further confirmed the effectiveness of structural dynamic modeling and modal test for LM-6 A.
基金‘Development of the Universal Portable Reference Equipment for the Efficient ITS System Performance Evaluation’under The Strategic Basic Research Program of the Korea Institute of Construction Technology.
文摘The Ministry of Land, Infrastructure and Transport of Korea introduced the ITS system performance evaluation about six and a half years ago. The main purpose is to make sure that accurate and reliable real-time traffic data are collected from the ITS system installed. There are three types of performance evaluations, which are Quality Certification Test, Pre-Delivery Test and Periodic Check in Operation. In this paper the accuracy levels of vehicle detectors commonly used in Korea are analyzed based on the results of quality certification tests conducted during 2008-2012. The test items consist of volume, speed and occupancy. The analysis shows that loop detectors have the best levels of accuracy in all three test items and their levels of accuracy have been steady. Video image detectors do not have so good levels of accuracy as loop detectors, but the levels of accuracy have improved as time passes. Radar detectors do not have good levels of accuracy. However, their levels of accuracy have improved as time passes. The last vehicle detectors, geomagnetism detectors have the worst accuracy in the occupancy item.
文摘To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motion parameters is studied. According to the characteristics of the output signals of the IMU and the GPS, without the IMU synchronization signal, the synchronization circuit based on CPLD is designed and developed, which need not alter the configurations of the IMU and GPS. Experiments of measuring vehicle motion parameters, which rely on the synchronization circuit to realize IMU/GPS data synchronization, are made. The driving routes in experiments comprise a curve and a straight line. Experimental results show that the designed circuit can accurately measure the synchronization time difference and the IMU period, and can effectively solve the data synchronization in IMU/GPS integration. Furthermore, the IMU/GPS integrated measurement system based on the synchronization circuit can measure and calculate many vehicle motion parameters in high frequency mode.
基金supported by National Natural Science Foundation of China(Grant No.51005017)
文摘Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.
基金the Ministry of Construction and Transportation,Korea Highway Corporation and Hyundai E&C Co.Ltd.under Project No.R&D/970003-2.
文摘Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of wind,and temperature.Besides these environmental conditions,tire mass of vehicles may change the measured valnes when traffic-in- duced vibration is used as a source of AVT tor bridges.The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges;(1)three-span suspension bridge(128m+404m+128m),(2) five-span continuous steel box girder bridge(59m+3@ 95m+59m),(3)simply supported plate girder bridge(46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field.These recor- ded histories are divided into individual vibrations and are combined into two groups aceording to the level of vibration;one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars.Separate processing of the two groups of signals shows that,for the middle and long-span bridges,the difference can be hardly detected,but,for the short span bridges whose mass is relatively small,the measured natural frequencies can change up to 5.4%.
文摘The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15+EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are -0.42—2.99, -0.32 —0.81 and -0.11—11 with FTP75 testing, 0.11—1.29, -0.77—0.64 and 0.47—10.50 with Beijing 1997 testing and 0.25—1.83, 0.09—0.75 and -0.58—1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI+TWC vehicles' pollution emission factors decrease with different degree. The retrofit vehicle(Santana) will reduce 4.44%—58.44% CO, -4.95%—36.79% NOx, -32.32%—33.89% HC, and -9.39%—14.29% fuel consumption, and especially that the MPI+TWC vehicle will decrease CO by 82.48%—91.76%, NOx by 44.87%—92.79%, HC by 90.00%—93.89% and fuel consumption by 5.44%—10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.