Based on the symmetric two-lane Nagel–Schreckenberg(STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occur...Based on the symmetric two-lane Nagel–Schreckenberg(STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occurrences of vehicle accidents are taken into account. The characteristics of traffic flows with different ratios of left-turn lines are discussed via the simulation experiments. The results indicate that the left-turn lines have more negative effects on capacity,accident rate as well as delay if the stop is located close to the intersections, where the negative effect in a near-side stop is more severe than that in a far-side one. The range of appropriate position for a bus stop without the bottleneck effect becomes more and more narrow with the increase of the ratio of left-turn bus lines. When the inflow is small, a short signal cycle and a reasonable offset are beneficial. When the inflow reaches or exceeds the capacity, a longer signal cycle is helpful. But if the stop position is inappropriate, the increase of cycle fails in reducing the negative effect of left-turning buses and the effectiveness of offset is weakened.展开更多
In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the disco...In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.展开更多
Operating short turning line is an efficient strategy to satisfy the unevenly distributed demand during peak periods while reducing operational cost.However,for the battery electric bus(BEB)system,the application of t...Operating short turning line is an efficient strategy to satisfy the unevenly distributed demand during peak periods while reducing operational cost.However,for the battery electric bus(BEB)system,the application of the strategy is challenging due to the disadvantages of BEBs,such as limited driving mileage and long charging time.Improper vehicle configuration and charging scheduling may dramatically increase the operational cost and cut the benefits of these strategies.In this work,we propose a general framework to design an effective short turning strategy for the BEB system at a tactical planning level.First,the trade-off relationship between the battery capacity and the average trip time is identified by modeling the BEBs operations.Second,a microeconomic model is formulated to jointly optimize the frequencies and charging schedules of the whole bus line and the short turning line,to effectively minimize passengers’waiting time and operational cost.Finally,numerical experiments have been carried out for an illustrative linear line to demonstrate the potential benefits of the sub-line operating strategy compared with the normal operation.展开更多
This paper gives a summary on recently available technologies for decentralized and distributed control of microgrids.They can be classified into two general categories:1)power line communication based architectures a...This paper gives a summary on recently available technologies for decentralized and distributed control of microgrids.They can be classified into two general categories:1)power line communication based architectures and 2)multi-agent based architectures.The essential control methods and information sharing algorithms applied in these architectures are reviewed and examined in a hierarchical manner,in order to point out benefits they will bring to future microgrid applications.The paper is concluded with a summary on existing methods and a discussion on future development trends.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50478088)the Natural Science Foundation of Hebei Province,China(Grant No.E2015202266)
文摘Based on the symmetric two-lane Nagel–Schreckenberg(STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occurrences of vehicle accidents are taken into account. The characteristics of traffic flows with different ratios of left-turn lines are discussed via the simulation experiments. The results indicate that the left-turn lines have more negative effects on capacity,accident rate as well as delay if the stop is located close to the intersections, where the negative effect in a near-side stop is more severe than that in a far-side one. The range of appropriate position for a bus stop without the bottleneck effect becomes more and more narrow with the increase of the ratio of left-turn bus lines. When the inflow is small, a short signal cycle and a reasonable offset are beneficial. When the inflow reaches or exceeds the capacity, a longer signal cycle is helpful. But if the stop position is inappropriate, the increase of cycle fails in reducing the negative effect of left-turning buses and the effectiveness of offset is weakened.
文摘In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.
基金supported by the National Natural Science Foundation of China(71971018,71621001,72091513).
文摘Operating short turning line is an efficient strategy to satisfy the unevenly distributed demand during peak periods while reducing operational cost.However,for the battery electric bus(BEB)system,the application of the strategy is challenging due to the disadvantages of BEBs,such as limited driving mileage and long charging time.Improper vehicle configuration and charging scheduling may dramatically increase the operational cost and cut the benefits of these strategies.In this work,we propose a general framework to design an effective short turning strategy for the BEB system at a tactical planning level.First,the trade-off relationship between the battery capacity and the average trip time is identified by modeling the BEBs operations.Second,a microeconomic model is formulated to jointly optimize the frequencies and charging schedules of the whole bus line and the short turning line,to effectively minimize passengers’waiting time and operational cost.Finally,numerical experiments have been carried out for an illustrative linear line to demonstrate the potential benefits of the sub-line operating strategy compared with the normal operation.
文摘This paper gives a summary on recently available technologies for decentralized and distributed control of microgrids.They can be classified into two general categories:1)power line communication based architectures and 2)multi-agent based architectures.The essential control methods and information sharing algorithms applied in these architectures are reviewed and examined in a hierarchical manner,in order to point out benefits they will bring to future microgrid applications.The paper is concluded with a summary on existing methods and a discussion on future development trends.