The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose...The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose of the independent supervision function is to ensure that the system operates within the scope of procedures and manuals.At present,the function of independent supervision is a difficult and confusing issue for various original equipment manufacturers as well as suppliers,and there is an urgent requirement to put forward relevant requirements and form relevant methods.Based on the above mentioned objective,the basic requirements of the independent supervision function of design assurance system were studied,the problems and deficiencies in the organization,staffing,and methods existing in the current independent supervision function were analyzed,the improvement suggestions and measures for the performance of the independent supervision function from the aspects of the organization,staffing,procedures,and suppliers were put forward.The present work and conclusions provide guidance and direction for the effective operation of the design assurance system.展开更多
According to practical hydrological emergency supervising program design,we have discovered and held a design principle with a method to get information promptly and accurately,monitor safely and conveniently,and coll...According to practical hydrological emergency supervising program design,we have discovered and held a design principle with a method to get information promptly and accurately,monitor safely and conveniently,and collect information systematically,expounded the emergency hydrological monitoring program towards hydrometry,which shall be taken full analysis on the special geological environment around the site,aimed at damming body monitoring,and also the construction of hydrological emergency supervising networks in the area,the live video acquisition towards special point of the dammed barrier,then carried out monitoring measures which were suitable to contemporary economy and technology to get complete hydrological information we require. Finally,we put forward a concrete designing method for precluding disaster and reducing the loss of disaster based on the information above.展开更多
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m...N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.展开更多
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two...Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design.展开更多
To rationalize the design of D-π-A type organic small-molecule nonlinear optical materials,a theory guided machine learning framework is constructed.Such an approach is based on the recognition that the optical prope...To rationalize the design of D-π-A type organic small-molecule nonlinear optical materials,a theory guided machine learning framework is constructed.Such an approach is based on the recognition that the optical property of the molecule is predictable upon accumulating the contribution of each component,which is in line with the concept of group contribution method in thermodynamics.To realize this,a Lewis-mode group contribution method(LGC)has been developed in this work,which is combined with the multistage Bayesian neural network and the evolutionary algorithm to constitute an interactive framework(LGC-msBNN-EA).Thus,different optical properties of molecules are afforded accurately and efficientlyby using only a small data set for training.Moreover,by employing the EA model designed specifically for LGC,structural search is well achievable.The origins of the satisfying performance of the framework are discussed in detail.Considering that such a framework combines chemical principles and data-driven tools,most likely,it will be proven to be rational and efficient to complete mission regarding structure design in related fields.展开更多
文摘The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose of the independent supervision function is to ensure that the system operates within the scope of procedures and manuals.At present,the function of independent supervision is a difficult and confusing issue for various original equipment manufacturers as well as suppliers,and there is an urgent requirement to put forward relevant requirements and form relevant methods.Based on the above mentioned objective,the basic requirements of the independent supervision function of design assurance system were studied,the problems and deficiencies in the organization,staffing,and methods existing in the current independent supervision function were analyzed,the improvement suggestions and measures for the performance of the independent supervision function from the aspects of the organization,staffing,procedures,and suppliers were put forward.The present work and conclusions provide guidance and direction for the effective operation of the design assurance system.
文摘According to practical hydrological emergency supervising program design,we have discovered and held a design principle with a method to get information promptly and accurately,monitor safely and conveniently,and collect information systematically,expounded the emergency hydrological monitoring program towards hydrometry,which shall be taken full analysis on the special geological environment around the site,aimed at damming body monitoring,and also the construction of hydrological emergency supervising networks in the area,the live video acquisition towards special point of the dammed barrier,then carried out monitoring measures which were suitable to contemporary economy and technology to get complete hydrological information we require. Finally,we put forward a concrete designing method for precluding disaster and reducing the loss of disaster based on the information above.
文摘N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.
基金the support of the Monash-IITB Academy Scholarshipthe Australian Research Council for funding the present research (DP190103592)。
文摘Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design.
基金support by the Key Research and Development Program of Zhejiang Province(2023C01102,2023C01208,2022C01208)。
文摘To rationalize the design of D-π-A type organic small-molecule nonlinear optical materials,a theory guided machine learning framework is constructed.Such an approach is based on the recognition that the optical property of the molecule is predictable upon accumulating the contribution of each component,which is in line with the concept of group contribution method in thermodynamics.To realize this,a Lewis-mode group contribution method(LGC)has been developed in this work,which is combined with the multistage Bayesian neural network and the evolutionary algorithm to constitute an interactive framework(LGC-msBNN-EA).Thus,different optical properties of molecules are afforded accurately and efficientlyby using only a small data set for training.Moreover,by employing the EA model designed specifically for LGC,structural search is well achievable.The origins of the satisfying performance of the framework are discussed in detail.Considering that such a framework combines chemical principles and data-driven tools,most likely,it will be proven to be rational and efficient to complete mission regarding structure design in related fields.