期刊文献+
共找到372篇文章
< 1 2 19 >
每页显示 20 50 100
基于GA-PSO混合优化SVM的机载EHA故障诊断
1
作者 覃刚 葛益波 +1 位作者 姚叶明 周清和 《液压与气动》 北大核心 2024年第5期168-180,共13页
针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Opti... 针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)混合优化支持向量机(Support Vector Machine,SVM)的故障诊断算法。GA鲁棒性好且全局搜索能力强但收敛速度慢,PSO对样本规模不敏感且具有记忆功能但易陷入局部最优,故融合两种算法寻找SVM的最优参数。另外,为了解决传统SVM多分类方法“一对多”和“一对一”易出现不可分的问题,建立一种偏二叉树结构的SVM多分类模型。对于采集的原始数据高度重合的情况,引入时域特征统计量进一步提升模型的分类性能。实验结果表明,提出的混合优化算法寻优速度更快、所寻参数更佳,同时用该算法优化的SVM分类模型相比于其他5类常用的机器学习模型分类效果更好,故障识别正确率可达97.7%。 展开更多
关键词 机载EHA 遗传算法 粒子群算法 偏二叉树结构 多分类svm
下载PDF
一种新的中文文本分类算法——One Class SVM-KNN算法 被引量:4
2
作者 刘文 吴陈 《计算机技术与发展》 2012年第5期83-86,共4页
中文文本分类在数据库及搜索引擎中得到广泛的应用,K-近邻(KNN)算法是常用于中文文本分类中的分类方法,但K-近邻在分类过程中需要存储所有的训练样本,并且直到待测样本需要分类时才建立分类,而且还存在类倾斜现象以及存储和计算的开销... 中文文本分类在数据库及搜索引擎中得到广泛的应用,K-近邻(KNN)算法是常用于中文文本分类中的分类方法,但K-近邻在分类过程中需要存储所有的训练样本,并且直到待测样本需要分类时才建立分类,而且还存在类倾斜现象以及存储和计算的开销大等缺陷。单类SVM对只有一类的分类问题具有很好的效果,但不适用于多类分类问题,因此针对KNN存在的缺陷及单类SVM的特点提出One Class SVM-KNN算法,并给出了算法的定义及详细分析。通过实验证明此方法很好地克服了KNN算法的缺陷,并且查全率、查准率明显优于K-近邻算法。 展开更多
关键词 中文文本分类 支持向量机 K-近邻 ONE class svm—KNN
下载PDF
基于one-class SVM与融合多可视化特征的可通行区域检测 被引量:2
3
作者 高华 赵春霞 韩光 《机器人》 EI CSCD 北大核心 2011年第6期731-735,741,共6页
针对难以获取完备的非可通行区域样本问题,为提高算法在不同场景的适应性,首次把可通行性检测看作单类分类问题,提出了基于one-class SVM的可通行区域检测算法.提出一种改进的融合颜色和纹理的特征提取方法,对各颜色分量进行离散余弦变... 针对难以获取完备的非可通行区域样本问题,为提高算法在不同场景的适应性,首次把可通行性检测看作单类分类问题,提出了基于one-class SVM的可通行区域检测算法.提出一种改进的融合颜色和纹理的特征提取方法,对各颜色分量进行离散余弦变换(DCT)变换,对DCT系数进行金字塔分解,用每个分解的均值和方差描述特征窗口.利用one-class SVM进行训练生成可通行区域的模式.实验表明,方法对新数据具有很好的识别能力,具有较高的检测精度和较低的误检率. 展开更多
关键词 可通行区域检测 ONE-class svm 多可视化特征 自主导航
下载PDF
基于One Class-SVM+Autoencoder模型的车辆碰撞检测 被引量:6
4
作者 杨文忠 杨蒙蒙 +2 位作者 温杰彬 张志豪 富雅玲 《新疆大学学报(自然科学版)》 CAS 2020年第3期271-276,281,共7页
为尽量避免车辆碰撞事故的发生,探索了机器学习和深度学习结合的方法,利用影响车辆碰撞的多个特征变量对车辆碰撞进行检测.首先使用皮尔逊相关性分析方法分析各个特征之间的关联度,接着使用One Class-SVM模型对数据集做"异常点&qu... 为尽量避免车辆碰撞事故的发生,探索了机器学习和深度学习结合的方法,利用影响车辆碰撞的多个特征变量对车辆碰撞进行检测.首先使用皮尔逊相关性分析方法分析各个特征之间的关联度,接着使用One Class-SVM模型对数据集做"异常点"抛除操作.利用SMOTE(Synthetic Minority Over-sampling Technique)算法增加了少数类别的样本数量,最后采用自动编码器模型将影响车辆碰撞的因素(例如天气情况、光照情况等)作为模型的输入,通过解码器重构原始输入,获得输入与输出的最小重构误差计算阈值判断车辆碰撞情况.实验表明,数据经过One Class-SVM模型处理,再使用Autoencoder模型检测获得了比较好的测试结果. 展开更多
关键词 车辆碰撞检测 皮尔逊相关性分析 SMOTE One class-svm Autoencoder
下载PDF
基于One-class SVM的网络时间隐蔽信道检测方法 被引量:5
5
作者 刘义 兰少华 《计算机与现代化》 2017年第6期108-111,121,共5页
网络时间隐蔽信道的检测是网络隐蔽信道研究中的热点和难点。当前的网络时间隐蔽信道的检测方法更多是针对某个或者某些特定的网络时间隐蔽信道,不具备通用性。本文利用机器学习中的SVM思想,提出一种基于One-class SVM的通用检测方法。... 网络时间隐蔽信道的检测是网络隐蔽信道研究中的热点和难点。当前的网络时间隐蔽信道的检测方法更多是针对某个或者某些特定的网络时间隐蔽信道,不具备通用性。本文利用机器学习中的SVM思想,提出一种基于One-class SVM的通用检测方法。把时间隐蔽信道的检测看作是一种单值分类问题,利用正常信道数据集进行训练,构建分类模型。实验表明该检测方法在保证较高检测率的同时,又具备较好的通用性,可以比较有效地检测出多种网络时间隐蔽信道。 展开更多
关键词 时间隐蔽信道 单类支持向量机 网络安全
下载PDF
基于One-Class SVM的青鳉鱼异常行为识别方法 被引量:5
6
作者 罗毅 王伟 +9 位作者 刘勇 姜杰 刘翠棉 赵乐 李歆琰 李治国 廖日红 王艳 王新春 饶凯锋 《河北工业科技》 CAS 2022年第3期230-236,共7页
为了更准确地解析青鳉鱼在突发污染环境中的行为变化趋势,提出了一种基于One-Class SVM模型的青鳉鱼异常行为识别方法。以青鳉鱼的生理及行为特征作为观测指标,将采集到的暴露在不同类型和浓度特征污染物下的青鳉鱼行为强度信号作为经... 为了更准确地解析青鳉鱼在突发污染环境中的行为变化趋势,提出了一种基于One-Class SVM模型的青鳉鱼异常行为识别方法。以青鳉鱼的生理及行为特征作为观测指标,将采集到的暴露在不同类型和浓度特征污染物下的青鳉鱼行为强度信号作为经验数据,利用直方图统计和主成分分析(PCA)对行为强度数据进行降维,实现行为特征提取,基于One-Class SVM构建模型,并以五水合硫酸铜和三氯酚作为特征污染物进行暴露实验对算法进行验证。结果表明,One-Class SVM模型可以准确地识别正常行为和污染物暴露时发生的异常行为;对于有机污染物最快可在10 min内完成预警,重金属污染物可在1 h内完成预警,并且污染物浓度越高,模型的识别效果越好。识别方法可对水源突发性水质污染进行更有效的监测和预警,也可为水污染应急决策提供技术支撑。 展开更多
关键词 环境质量监测与评价 模式识别 青鳉鱼 异常行为 One-class svm
下载PDF
基于One-class SVM的噪声图像分割方法 被引量:5
7
作者 尚方信 郭浩 +1 位作者 李钢 张玲 《计算机应用》 CSCD 北大核心 2019年第3期874-881,共8页
为解决现有无监督图像分割模型对强噪声环境鲁棒性差、无法适应复杂混合噪声的问题,提出了一种基于One-class SVM方法的改进后的噪声鲁棒图像分割模型。首先,基于One-class SVM构建一种数据离群程度检测机制;然后,将离群程度值引入能量... 为解决现有无监督图像分割模型对强噪声环境鲁棒性差、无法适应复杂混合噪声的问题,提出了一种基于One-class SVM方法的改进后的噪声鲁棒图像分割模型。首先,基于One-class SVM构建一种数据离群程度检测机制;然后,将离群程度值引入能量泛函,令分割模型可以在多种噪声强度下获得较为准确的图像信息,同时避免现有方法在强噪声环境下,降权机制失效的问题;最后,通过最小化能量函数,驱动分割轮廓向目标边缘演化。在噪声图像分割实验中,当选取不同类型和强度的噪声时,该模型均能得到较为理想的分割结果。在F_1-score评估标准下,该模型比基于局部相关熵的K-means(LCK)模型高0.2~0.3,在强噪声环境下具有更高的稳定性,且在分割收敛时间上仅略大于LCK模型0.1 s左右。实验结果表明,所提模型在未显著增加分割耗时的前提下,对于概率、极值及混合噪声均有着更强的鲁棒性,并且可以分割带有噪声的自然图像。 展开更多
关键词 图像分割 图像噪声 单类支持向量机 离群检测 能量项
下载PDF
Power Quality Disturbance Classification Method Based on Wavelet Transform and SVM Multi-class Algorithms 被引量:1
8
作者 Xiao Fei 《Energy and Power Engineering》 2013年第4期561-565,共5页
The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav... The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification. 展开更多
关键词 Power Quality DISTURBANCE classification WAVELET TRANSFORM svm MULTI-class ALGORITHMS
下载PDF
基于One-Class SVM的机载塔康测距信息异常检测方法研究
9
作者 李城梁 《现代导航》 2015年第3期282-285,309,共5页
针对多源导航信息融合系统中导航传感器数据保障的问题,本文提出了一种基于One-Class SVM的机载塔康测距信息异常检测方法。首先,提取机载塔康测距信息的时域参数构成特征样本空间;然后,采用One-Class SVM训练出机载塔康测距信息正常状... 针对多源导航信息融合系统中导航传感器数据保障的问题,本文提出了一种基于One-Class SVM的机载塔康测距信息异常检测方法。首先,提取机载塔康测距信息的时域参数构成特征样本空间;然后,采用One-Class SVM训练出机载塔康测距信息正常状态时的模型,通过发现非正常状态的样本进行异常检测。利用模拟的机载塔康测距数据进行方法验证,实验结果表明:该异常检测方法对机载塔康测距信息中的噪声有一定的鲁棒性,可以满足实际应用的需要。 展开更多
关键词 异常检测 机载塔康测距 ONE-class svm
下载PDF
融合连续域蚁群算法One-Class SVM的电力离群用户检测
10
作者 郭玮 《国外电子测量技术》 2020年第6期148-154,共7页
连续域蚁群优化算法是蚁群优化算法的主要研究方向。通过分析蚁群觅食过程中的位置分布与食物来源之间的关系,提出了蚁群一类支持向量机(One-Class SVM)算法。在此算法的基础上,设计了一种电力离群用户检测算法,给出了算法的求解形式,... 连续域蚁群优化算法是蚁群优化算法的主要研究方向。通过分析蚁群觅食过程中的位置分布与食物来源之间的关系,提出了蚁群一类支持向量机(One-Class SVM)算法。在此算法的基础上,设计了一种电力离群用户检测算法,给出了算法的求解形式,根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对支持向量机的训练参数进行优化,可以在样本分布不均匀、样本分布未知的环境下有效识别电力离群用户,并对其他算法的测试结果进行了比较和分析,以验证所提出算法的正确性和有效性。 展开更多
关键词 蚁群算法 ONE-class svm 离群检测 电力离群
下载PDF
基于One-class SVM的大工业负荷模型研究
11
作者 程婷婷 陈云龙 +2 位作者 梁雅洁 张海静 张玉敏 《山东电力技术》 2019年第6期10-15,共6页
随着新型能源的不断增长,电力系统的负荷特性不断变化,电网的供需关系特性改变,给电网运行调峰、有序用电、客户管理带来了新的挑战。提出基于单类支持向量机(One-class SVM)的大工业用户负荷模型,从典型日选取、相关系数、频谱分析、... 随着新型能源的不断增长,电力系统的负荷特性不断变化,电网的供需关系特性改变,给电网运行调峰、有序用电、客户管理带来了新的挑战。提出基于单类支持向量机(One-class SVM)的大工业用户负荷模型,从典型日选取、相关系数、频谱分析、指标体系4个层面建立大工业负荷模型,按照典型客户、客户群、行业负荷3个层级研究多时间维度、多层次的大用户负荷特性,实现对大工业电力负荷数据的实时跟踪。实际应用表明,该方法能够有效分析各类大用户用电规律以及相关特性。 展开更多
关键词 大工业负荷模型 One-classsvm 频谱分析 典型日负荷曲线 负荷特性指标
下载PDF
基于节点选择优化的DAG-SVM多类别分类 被引量:9
12
作者 沈健 蒋芸 +2 位作者 邹丽 陈娜 胡学伟 《计算机工程》 CAS CSCD 北大核心 2015年第6期143-146,共4页
有向无环图支持向量机(DAG-SVM)对于N类别分类问题,会构造N×(N-1)/2个支持向量机分类器(为每2个类构造一个支持向量机),DAG-SVM可能出现由于节点选择不佳而导致整个分类器分类结果较差的情况。为此,提出一种改进的DAG-SVM。通过为... 有向无环图支持向量机(DAG-SVM)对于N类别分类问题,会构造N×(N-1)/2个支持向量机分类器(为每2个类构造一个支持向量机),DAG-SVM可能出现由于节点选择不佳而导致整个分类器分类结果较差的情况。为此,提出一种改进的DAG-SVM。通过为每一层建立备选节点集合进行节点选择,选取下层备选节点集合中训练分类精度最高的一个节点组合作为当前层节点的下层节点,从而优化DAG-SVM的拓扑结构。实验结果表明,与已有的DAG-SVM,1-vs-1SVM,1-vs-a SVM方法相比,该方法的分类精度较高。 展开更多
关键词 有向无环图支持向量机 分类器 多类别分类 节点选择优化 备选节点
下载PDF
基于RS与LS-SVM多分类法的故障诊断方法及其应用 被引量:10
13
作者 蒋少华 桂卫华 +1 位作者 阳春华 戴贤江 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期447-451,共5页
针对密闭鼓风炉熔炼过程工艺复杂、工况变化较大的特点,提出应用粗糙集(RS)和最小二乘支持向量机(LS-SVM)进行鼓风炉故障诊断的方法。该方法首先利用RS对炉子的故障样本进行知识约简,获得各故障类型的征兆最小条件属性作为特征向量,然后... 针对密闭鼓风炉熔炼过程工艺复杂、工况变化较大的特点,提出应用粗糙集(RS)和最小二乘支持向量机(LS-SVM)进行鼓风炉故障诊断的方法。该方法首先利用RS对炉子的故障样本进行知识约简,获得各故障类型的征兆最小条件属性作为特征向量,然后,输入到由多个最小二乘支持向量机构成的多故障分类器中进行故障识别和分类。研究结果表明:该方法具有较强的泛化能力,诊断准确率达到90%以上。 展开更多
关键词 粗糙集 最小二乘支持向量机 多类分类器 故障诊断
下载PDF
维语网页中n-gram模型结合类不平衡SVM的不良文本过滤方法 被引量:5
14
作者 如先姑力·阿布都热西提 亚森·艾则孜 郭文强 《计算机应用研究》 CSCD 北大核心 2019年第11期3410-3414,共5页
提出了一种结合n-gram统计模型和类不平衡支持向量机(SVM)分类器的维语文本过滤方法。首先,将网页文本进行预处理操作,通过n-gram统计模型来初步提取词干;然后,对词干进行语义分析,将具有相似含义的词干聚合为一类,以此降低词干维度;最... 提出了一种结合n-gram统计模型和类不平衡支持向量机(SVM)分类器的维语文本过滤方法。首先,将网页文本进行预处理操作,通过n-gram统计模型来初步提取词干;然后,对词干进行语义分析,将具有相似含义的词干聚合为一类,以此降低词干维度;最后,在传统SVM中引入一个控制超平面之间距离的参数,构建一种类不平衡SVM,使其能够很好地分类具有非线性不可分和不平衡性的维吾尔语文本。实验结果表明,该方法能够准确分类出不良文本,且具有较短的分类时间。 展开更多
关键词 维吾尔语网页 不良文本过滤 n-gram词干提取 类不平衡svm
下载PDF
基于AAM模型和RS-SVM的人脸识别研究 被引量:5
15
作者 王李冬 王玉槐 《计算机工程与应用》 CSCD 北大核心 2009年第22期140-143,共4页
提出了一种基于AAM模型和RS-SVM的人脸识别算法。首先,使用一种基于统计学定位的图像定位方法—主动外观模型(AAM),将其应用到人脸特征定位。为了从所有提取的特征中选择出与人脸识别相关的、必要的特征,使用了粗糙集理论(RoughSet)的... 提出了一种基于AAM模型和RS-SVM的人脸识别算法。首先,使用一种基于统计学定位的图像定位方法—主动外观模型(AAM),将其应用到人脸特征定位。为了从所有提取的特征中选择出与人脸识别相关的、必要的特征,使用了粗糙集理论(RoughSet)的属性约简算法进行特征选择,有效降低特征维数。然后用支持向量机(SVM)进行分类。实验证明,该方法在不影响识别率的情况下,可以有效降低SVM的运算复杂度。 展开更多
关键词 人脸识别 主动外观模型 粗糙集理论 支持向量机 粗糙集-支持向量机(RS—svm)
下载PDF
HSMC-SVM的二次逼近快速训练算法 被引量:2
16
作者 徐图 罗瑜 何大可 《电子与信息学报》 EI CSCD 北大核心 2008年第11期2746-2749,共4页
HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-S... HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-SVM,并使用了样本缩减策略。实验表明,这种方法可以有效提高HSMC-SVM的收敛速度,其收敛速度已经超过了基于libsvm的组合多类支持向量机,完全可以用于分类类别多、样本数量大的分类场合。 展开更多
关键词 超球体多类支持向量机 SMO训练算法 工作集选择:二次逼近
下载PDF
基于贝叶斯网络的Fuzzy-SVM路基震害预测模型 被引量:1
17
作者 刘阳 张建经 +2 位作者 罗宏森 于海莹 向波 《中国安全科学学报》 CAS CSCD 北大核心 2021年第11期171-178,共8页
为解决现有路基震害预测方法主观性强且无法考虑非线性特征的问题,以贝叶斯网络(BN)为框架,将工程经验与历史路基震害样本融合,改进网络参数求解方法,建立一种基于BN的模糊(Fuzzy)-支持向量机(SVM)路基震害预测模型。利用Fuzzy理论求解B... 为解决现有路基震害预测方法主观性强且无法考虑非线性特征的问题,以贝叶斯网络(BN)为框架,将工程经验与历史路基震害样本融合,改进网络参数求解方法,建立一种基于BN的模糊(Fuzzy)-支持向量机(SVM)路基震害预测模型。利用Fuzzy理论求解BN参数的先验概率,同时利用SVM求解BN参数的实际样本潜在概率;基于贝叶斯原理,将先验概率与实际样本潜在概率融合,得到既满足震害工程经验又体现历史震害样本中非线性特性的预测模型。结果表明:将提出的预测模型应用于汶川地震影响区的42个路基隐患点,预测准确率为80.95%。该模型在小样本情况下较传统机器学习方法(以SVM为代表)精度更高;并且,该模型在路基属性不完整的情况下也能有效预测震害等级。 展开更多
关键词 贝叶斯网络(BN) 路基震害 预测模型 模糊(Fuzzy)-支持向量机(svm) 先验知识
下载PDF
基于OCSVM-CPSO的自适应故障诊断 被引量:1
18
作者 钟清流 蔡自兴 《计算机工程与应用》 CSCD 北大核心 2007年第8期18-20,31,共4页
提出了一种基于OCSVM-CPSO自适应故障诊断模型,它用OCSVM作为基本检测模块,而用CPSO作为最优参数的搜索模块.当在线运行的检测准确率低于某确定的阈值时,启动CPSO搜索新的参数。而准确率达标时,用新参数继续后续检测过程。实验表明:此... 提出了一种基于OCSVM-CPSO自适应故障诊断模型,它用OCSVM作为基本检测模块,而用CPSO作为最优参数的搜索模块.当在线运行的检测准确率低于某确定的阈值时,启动CPSO搜索新的参数。而准确率达标时,用新参数继续后续检测过程。实验表明:此方法能够有效地实现高准确率在线检测任务。 展开更多
关键词 一类支持向量机 混沌粒子群优化 自适应 故障诊断
下载PDF
基于THz-TDS技术与改进IPSO-SVM模型的小米品质识别 被引量:2
19
作者 白雪 李明利 徐雷钧 《江苏农业科学》 2018年第21期254-258,267,共6页
为实现小米品质快速、精确的鉴别分析,探索了一种基于THz技术结合化学计量学方法的小米品质识别的新方法。采用THz-TDS技术测试了正常、虫蛀和霉变小米样品,将0~1. 6 THz频段的吸收系数与模式识别算法结合实现其品质鉴别分析。结果表明... 为实现小米品质快速、精确的鉴别分析,探索了一种基于THz技术结合化学计量学方法的小米品质识别的新方法。采用THz-TDS技术测试了正常、虫蛀和霉变小米样品,将0~1. 6 THz频段的吸收系数与模式识别算法结合实现其品质鉴别分析。结果表明,不同品质小米的吸收系数和折射率具有差异。利用直接正交信号校正+标准正态交换+S-G卷积平滑(DSOC+SNV+S-G)预处理和竞争性自适应重加权+连续投影法(CARS+SPA)优选的16个特征波长所建偏最小二乘法-判别分析(PLS-DA)、粒子群-支持向量机(PSO-SVM)模型测试集准确率分别为93. 33%、95. 55%。为解决粒子群(PSO)寻优过程易陷入局部极值的问题和提升模型性能,对此提出了一种新型的粒子群(IPSO)优化支持向量机(SVM)的方法。通过增加调制参数和更新机制进行参数寻优,利用基于径向基内核(RBF)的支持向量机(SVM)和10折交叉验证的方法建立识别模型,寻优得到核函数参数g=15. 459 3、惩罚参数c=0. 813 3所建IPSO-SVM的性能优于其他模型,回代训练集和测试集的准确率达到100. 00%、97. 78%。可见,THz技术结合IPSO-SVM能较准确地鉴别小米品质,为小米品质的识别探索出一种新方法。 展开更多
关键词 太赫兹时域光谱(THz-TDS)技术 小米 品质 吸收系数 偏最小二乘法-判别分析(PLS-DA) 类子群(PSO)-支持向量机(svm)
下载PDF
基于μσ-DWC特征和树结构M-SVM的多维时间序列分类
20
作者 谭海龙 刘康玲 +2 位作者 金鑫 石向荣 梁军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第6期1061-1069,1100,共10页
为了实现多维时间序列的分类,提出基于统计量-小波系数(μσ-DWC)的序列特征提取方法和新型树结构多分类支持向量机M-SVM模型.分类算法的实现过程如下:利用该特征提取方法将原始多维时间序列映射到特征空间,获得原始序列的压缩表示,即... 为了实现多维时间序列的分类,提出基于统计量-小波系数(μσ-DWC)的序列特征提取方法和新型树结构多分类支持向量机M-SVM模型.分类算法的实现过程如下:利用该特征提取方法将原始多维时间序列映射到特征空间,获得原始序列的压缩表示,即特征向量;得到训练集的特征向量表示之后,训练和构建树结构M-SVM模型;提取未知序列的特征向量并输入已训练完成的树结构M-SVM模型,得到未知序列的类标号,完成分类.实验结果表明:该算法比传统的分类方法具有更高的分类准确率和预测速度,同时可以保证较理想的训练速度. 展开更多
关键词 多维时间序列 特征提取 小波系数 多分类支持向量机(M-svm) 树结构
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部