Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ...Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.展开更多
Three Complexes of the formula [Cd (4,4'-bpy)_2 (H_2O)_2]_n. (pic)_(2n) (1) [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n(H_2O)_n (pic)-(2n) (2) and [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n (pic)-(2n)(H_...Three Complexes of the formula [Cd (4,4'-bpy)_2 (H_2O)_2]_n. (pic)_(2n) (1) [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n(H_2O)_n (pic)-(2n) (2) and [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n (pic)-(2n)(H_2O)_n (3) (4.4'-bpy = 4.4'-bipyridine. pic = picric anion ) have been synthesized and characterized by elemental analysis and single-crystal x-ray diffraction. They all have infinite three-dimensional network structure. crystallizing in the monoclinic space group C2/c (1) and Cc (2.3).展开更多
3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body...3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.展开更多
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Co...Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Compressive re- sidual stress and dent profile are important factors to eval- uate the effectiveness of shot peening process. In this pa- per, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of pro- cessing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were de- duced by dimensional analysis method. Secondly, the in- fluence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Fur- thermore, related empirical formulas were given for each di- mensionless parameter based on the simulation results. Fi- nally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this pa- per for analyzing the influence of each individual parameter.展开更多
This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -...This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -3D ) is presented in the Present paper,which is the most suitable one for the dual - structured - aquifer system. An example of Wenyinghu area is shown.By using the 2D-3D model, a satisfied result of the simulated area is achieved.展开更多
A three - dimenslonal finite element model is developed to deal with the polymeric liquid flow in coat - hanger die. This model is used to predict the flow behavior of the 2% CMC/watsr solution in the coat - hanger d...A three - dimenslonal finite element model is developed to deal with the polymeric liquid flow in coat - hanger die. This model is used to predict the flow behavior of the 2% CMC/watsr solution in the coat - hanger die with linearly taper manifolds and its validity is experimentally verified quantitatively and qualitatively by using Laser Doppler Velocimetry and Particle Image Velocimetry respectively.展开更多
As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity ...As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity (~ 670 mAh·g--1). However, the low electrical conductivity of MoS2 and its dramatic volume change during charge/discharge lead to severe capacity degradation and poor cycling stability. In this work, we developed a facile, scalable, and effective synthesis method to embed nanosized MoS2 into a thin film of three-dimensional (3D)-interconnected carbon nanofibers (CNFs), producing a MoS2/CNFs film. The free-standing MoS2/CNFs thin film can be used as anode for NIBs without additional binders or carbon black. The MoS2/CNFs electrode exhibits a high reversible capacity of 260 mAh·g^-1, with an extremely low capacity loss of 0.05 mAh·g^-1 per cycle after 2,600 cycles at a current density of 1 A·g^-1. This enhanced sodium storage performance is attributed to the synergistic effect and structural advantages achieved by embedding MoS2 in the 3D-interconnected carbon matrix.展开更多
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology, Beijing University of Science and Technology (KFJJ09-13)
文摘Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.
基金National Natural Science Foundation of ChinaNatural Science Foundation of Guangxi
文摘Three Complexes of the formula [Cd (4,4'-bpy)_2 (H_2O)_2]_n. (pic)_(2n) (1) [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n(H_2O)_n (pic)-(2n) (2) and [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n (pic)-(2n)(H_2O)_n (3) (4.4'-bpy = 4.4'-bipyridine. pic = picric anion ) have been synthesized and characterized by elemental analysis and single-crystal x-ray diffraction. They all have infinite three-dimensional network structure. crystallizing in the monoclinic space group C2/c (1) and Cc (2.3).
基金item of significant subject construction in Shanghai
文摘3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.
基金supported by the National Natural Science Foun-dation of China (10972228,11002150,and 91016025)the Basic Research Equipment Project of Chinese Academy of Sciences(YZ200930)
文摘Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Compressive re- sidual stress and dent profile are important factors to eval- uate the effectiveness of shot peening process. In this pa- per, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of pro- cessing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were de- duced by dimensional analysis method. Secondly, the in- fluence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Fur- thermore, related empirical formulas were given for each di- mensionless parameter based on the simulation results. Fi- nally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this pa- per for analyzing the influence of each individual parameter.
文摘This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -3D ) is presented in the Present paper,which is the most suitable one for the dual - structured - aquifer system. An example of Wenyinghu area is shown.By using the 2D-3D model, a satisfied result of the simulated area is achieved.
文摘A three - dimenslonal finite element model is developed to deal with the polymeric liquid flow in coat - hanger die. This model is used to predict the flow behavior of the 2% CMC/watsr solution in the coat - hanger die with linearly taper manifolds and its validity is experimentally verified quantitatively and qualitatively by using Laser Doppler Velocimetry and Particle Image Velocimetry respectively.
基金This work was supported by the National Key Research and Development Program of China (No. 2016YFB0100305), the National Natural Science Foundation of China (Nos. 21373195 and 51622210), the Fundamental Research Funds for the Central Universities (No. WK3430000004), and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity (~ 670 mAh·g--1). However, the low electrical conductivity of MoS2 and its dramatic volume change during charge/discharge lead to severe capacity degradation and poor cycling stability. In this work, we developed a facile, scalable, and effective synthesis method to embed nanosized MoS2 into a thin film of three-dimensional (3D)-interconnected carbon nanofibers (CNFs), producing a MoS2/CNFs film. The free-standing MoS2/CNFs thin film can be used as anode for NIBs without additional binders or carbon black. The MoS2/CNFs electrode exhibits a high reversible capacity of 260 mAh·g^-1, with an extremely low capacity loss of 0.05 mAh·g^-1 per cycle after 2,600 cycles at a current density of 1 A·g^-1. This enhanced sodium storage performance is attributed to the synergistic effect and structural advantages achieved by embedding MoS2 in the 3D-interconnected carbon matrix.