The study of phased array radar( PAR) pulse amplitude sequence characteristics is the key to understand the radar's working state and its beam's scanning manner.According to the principle of antenna pattern fo...The study of phased array radar( PAR) pulse amplitude sequence characteristics is the key to understand the radar's working state and its beam's scanning manner.According to the principle of antenna pattern formation and the searching and tracking modes of beams,this paper analyzes the characteristics and differences of pulse amplitude sequence when the radar beams work in searching and tracking modes respectively.Then an optimal sorting model of pulse amplitude sequence is established based on least-squares and curve-fitting methods.This method is helpful for acquiring the current working state of the radar and recognizing its instantaneous beam pointing by sorting the pulse amplitude sequence without the necessity to estimate the antenna pattern.展开更多
A kind of heap sorting method based on array sorting was proposed. Some advantages and disadvantages of it were discussed. It was compared with the traditional method of direct application. In the method, the ordered ...A kind of heap sorting method based on array sorting was proposed. Some advantages and disadvantages of it were discussed. It was compared with the traditional method of direct application. In the method, the ordered keywords in the array are put into the heap one by one after building an empty heap. This method needs relatively less space and is fit for ordered sequence.展开更多
An optical routing-switching technology based on optical switch array is proposed.The characteristics of the blocking and nonblocking networks are analyzed and compared,odd-even sorting network is used to realize opti...An optical routing-switching technology based on optical switch array is proposed.The characteristics of the blocking and nonblocking networks are analyzed and compared,odd-even sorting network is used to realize optical routing-switching,relative routing-switching protocol is designed.Simulation test under load shows that it can reduce a blocking effectively and enhance an efficiency of switching.Further,it can transfer the processing and switching within parallel computer from electric domain to optical domain. It can make parallel computer coordinating computing and processing at much more higher speed, storing and transmitting even more efficiently.展开更多
This article reviews the recent developments in the fabrication and properties of one-dimensional (1D) Bi-based nanostructures, including Bi, Sb, BixSb1-x and Bi2Te3 nanowire arrays, and Bi-Bi and Bi-Sb nanojunction...This article reviews the recent developments in the fabrication and properties of one-dimensional (1D) Bi-based nanostructures, including Bi, Sb, BixSb1-x and Bi2Te3 nanowire arrays, and Bi-Bi and Bi-Sb nanojunction arrays. In this article, we present an efiective method to fabricate Bi nanowire arrays with difierent diameters in anodic alumina membrane (AAM) with a single pore size by the pulsed electrodeposition. The fabrication of the high-filling and ordered Bi1-xSbx and Bi2Te3 single crystalline nanowire arrays, the Bi nanowire metalsemiconductor homojunction and Bi-Sb nanowire metal-semiconductor heterojunction arrays by the pulsed electrodeposition are reported. The factors controlling the composition, diameter, growth rate and orientation of the nanowires are analyzed, and the growth mechanism of the nanowire and nanojunction arrays are discussed together with the study of the electrical and thermal properties of Bi-based nanowires and nanojunctions.Finally, this review is concluded with some perspectives on the research directions and focuses in the Bi-based nanomaterials fields.展开更多
Gaseous phases of carbon-containing and metastable oxides will be resulted from the carbonization of phenolic resin binders and the reduced reactions between C and oxides at high temperatures in carbon-containing refr...Gaseous phases of carbon-containing and metastable oxides will be resulted from the carbonization of phenolic resin binders and the reduced reactions between C and oxides at high temperatures in carbon-containing refractories. With the in-situ catalysis technique, these gaseous phases can be transformed to one-or two-dimensional bonding phases by deposition,which is favorable for the improvement on strength and toughness of carboncontaining refractories,especially low carbon refractories. The research results reveal that:( 1) the amorphous carbon resulted from phenolic resin can be transformed to carbon nanotubes,thus,the oxidation peak temperature is raised from 506 to 664. 6 ℃;( 2) onedimensional whiskers of MgO or Mg Al2 O4 can be in-situ formed in MgO-C refractories, and their CMOR,CCS,rupture displacement and residual CCS( two water quenching cycles,1 100 ℃) are increased by 66%,47%,13% and 26%,respectively;( 3) two-dimensional array structure of flake β-SiAlON can be in-situ formed in Al2 O3-C refractories,which improves the material strength by 60% and decreases the residual strength after thermal shock by only 4. 5 MPa. It is believed that the in-situ formation of one-or two-dimensional bonding phases at high temperatures can improvethe comprehensive thermal physical properties of carboncontaining refractories,and will be the developing trend of the strengthening and toughening of low carbon-containing refractories.展开更多
文摘The study of phased array radar( PAR) pulse amplitude sequence characteristics is the key to understand the radar's working state and its beam's scanning manner.According to the principle of antenna pattern formation and the searching and tracking modes of beams,this paper analyzes the characteristics and differences of pulse amplitude sequence when the radar beams work in searching and tracking modes respectively.Then an optimal sorting model of pulse amplitude sequence is established based on least-squares and curve-fitting methods.This method is helpful for acquiring the current working state of the radar and recognizing its instantaneous beam pointing by sorting the pulse amplitude sequence without the necessity to estimate the antenna pattern.
文摘A kind of heap sorting method based on array sorting was proposed. Some advantages and disadvantages of it were discussed. It was compared with the traditional method of direct application. In the method, the ordered keywords in the array are put into the heap one by one after building an empty heap. This method needs relatively less space and is fit for ordered sequence.
文摘An optical routing-switching technology based on optical switch array is proposed.The characteristics of the blocking and nonblocking networks are analyzed and compared,odd-even sorting network is used to realize optical routing-switching,relative routing-switching protocol is designed.Simulation test under load shows that it can reduce a blocking effectively and enhance an efficiency of switching.Further,it can transfer the processing and switching within parallel computer from electric domain to optical domain. It can make parallel computer coordinating computing and processing at much more higher speed, storing and transmitting even more efficiently.
基金The authors acknowledge the support from the National Major Project of Fundamental Research for Nanomaterials and Nanostructures (No. 2005CB623603);National Natural Science Foundation of China (No. 10474098);Natural Science Foundation of Anhui Provinc(No. 050440902).
文摘This article reviews the recent developments in the fabrication and properties of one-dimensional (1D) Bi-based nanostructures, including Bi, Sb, BixSb1-x and Bi2Te3 nanowire arrays, and Bi-Bi and Bi-Sb nanojunction arrays. In this article, we present an efiective method to fabricate Bi nanowire arrays with difierent diameters in anodic alumina membrane (AAM) with a single pore size by the pulsed electrodeposition. The fabrication of the high-filling and ordered Bi1-xSbx and Bi2Te3 single crystalline nanowire arrays, the Bi nanowire metalsemiconductor homojunction and Bi-Sb nanowire metal-semiconductor heterojunction arrays by the pulsed electrodeposition are reported. The factors controlling the composition, diameter, growth rate and orientation of the nanowires are analyzed, and the growth mechanism of the nanowire and nanojunction arrays are discussed together with the study of the electrical and thermal properties of Bi-based nanowires and nanojunctions.Finally, this review is concluded with some perspectives on the research directions and focuses in the Bi-based nanomaterials fields.
文摘Gaseous phases of carbon-containing and metastable oxides will be resulted from the carbonization of phenolic resin binders and the reduced reactions between C and oxides at high temperatures in carbon-containing refractories. With the in-situ catalysis technique, these gaseous phases can be transformed to one-or two-dimensional bonding phases by deposition,which is favorable for the improvement on strength and toughness of carboncontaining refractories,especially low carbon refractories. The research results reveal that:( 1) the amorphous carbon resulted from phenolic resin can be transformed to carbon nanotubes,thus,the oxidation peak temperature is raised from 506 to 664. 6 ℃;( 2) onedimensional whiskers of MgO or Mg Al2 O4 can be in-situ formed in MgO-C refractories, and their CMOR,CCS,rupture displacement and residual CCS( two water quenching cycles,1 100 ℃) are increased by 66%,47%,13% and 26%,respectively;( 3) two-dimensional array structure of flake β-SiAlON can be in-situ formed in Al2 O3-C refractories,which improves the material strength by 60% and decreases the residual strength after thermal shock by only 4. 5 MPa. It is believed that the in-situ formation of one-or two-dimensional bonding phases at high temperatures can improvethe comprehensive thermal physical properties of carboncontaining refractories,and will be the developing trend of the strengthening and toughening of low carbon-containing refractories.