The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)s...The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)systems,the generalization to explore them in higher dimensional systems is still a challenging task.In this study,we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds,where the contexture of 1D chains facilitates rich emergent properties.While the quasi-1D chains in these materials share general similarities,such as the motifs made up of MoO_(6)octahedrons,they exhibit vast complexity and remarkable tunability.We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations.Furthermore,we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models.Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems.展开更多
Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ...Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous...We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.展开更多
We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net ...We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net work algorithm. The phase transition points are shown in the entanglement entropy figure. The results are agreed with the phase diagram.展开更多
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "L...Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.展开更多
The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Ko...The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Kolmogorov's entropy, the fractional dimension D = 7.7-7.9 and the positive value K2 - 0.1 are obtained. This shows that the attractor for the short-term weather evolution in the monsoon region of China exhibits a chaotic motion. The estimate of K2 yields a predictable time scale of about ten days. This result is in agreement with that obtained earlier by the dynamic-statistical approach.The effects of the lag time i on the estimate of D and K2 are investigated. The results show that D and K2 are convergent with respect to i. The day to day averaged pressure series used in this paper are treated for the extensive phase space with T = 5, the coordinate components are independent of each other; therefore, the dynamical character quantities of the system are stable and reliable.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microsco...The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The results suggest that yield strength increases and then decreases with the increment of Ti content.The Ti_(60)(AlVCr)_(40)alloy has the best combination of high strength of 1204 MPa and uniform plastic strain of 70%,possessing a high specific yield strength of 255 MPa·cm^(3)/g.The enhancement of strength is mainly attributed to the synergic effects of solid-solution and coherent nano-precipitation strengthening,while dislocation motion such as dislocation pinning,entanglement and dislocation cells significantly increases the strain-hardening capacity.展开更多
The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters we...The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications.展开更多
This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was ca...This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of ID oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area.展开更多
By constructing a new conformal mapping function, we study the surface effects on six edge nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional (1D) hexagonal piezoelectric quasicrystals under a...By constructing a new conformal mapping function, we study the surface effects on six edge nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional (1D) hexagonal piezoelectric quasicrystals under anti-plane shear. Based on the Gurtin–Murdoch surface/interface model and complex potential theory, the exact solutions of phonon field, phason field and electric field are obtained. The analytical solutions of the stress intensity factor of the phonon field, the stress intensity factor of the phason field, the electric displacement intensity factor and the energy release rate are given. The interaction effects of the nano-cracks and nano-hole on the stress intensity factor of the phonon field, the stress intensity factor of the phason field and the electric displacement intensity factor are discussed in numerical examples. It can be seen that the surface effect leads to the coupling of phonon field, phason field and electric field. With the decrease of cavity size, the influence of surface effect is more obvious.展开更多
Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal ...Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals.Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack,as well as the force on dislocation.The derivation is based on the conformal mapping method and the perturbation technique.The influences of the wedge angle and dislocation location on the image force are also discussed.The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones.展开更多
One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale elect...One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale electric and optoelectronic devices. Zinc sulfide (ZnS) is an important semiconductor compound of Ⅱ-Ⅵ group, and the synthesis of 1D ZnS nanomaterials and nanostructures has been of growing interest owing to their promising application in nanoscale optoelectronic devices. This paper reviews the recent progress on 1D ZnS nanomaterials and nanostructures, including nanowires, nanowire arrays, nanorods, nanobelts or nanoribbons, nanocables, and hierarchical nanostructures etc. This article begins with a survey of various methods that have been developed for generating 1D nanomaterials and nanostructures, and then mainly focuses on structures, synthesis, characterization, formation mechanisms and optical property tuning, and luminescence mechanisms of 1D ZnS nanomaterials and nanostructures. Finally, this review concludes with personal views towards future research on 1D ZnS nanomaterials and nanostructures.展开更多
Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change o...Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.展开更多
Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant chal...Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant challenge.In this study,a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method.The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique,indicating the excellent magnetic loss ability under an external EM field.Then,the in-depth analysis shows that many factors,including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy,primarily contribute to the enhanced EM wave absorption performance.Therefore,the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm.Thus,this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.展开更多
Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solv...Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.展开更多
文摘The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)systems,the generalization to explore them in higher dimensional systems is still a challenging task.In this study,we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds,where the contexture of 1D chains facilitates rich emergent properties.While the quasi-1D chains in these materials share general similarities,such as the motifs made up of MoO_(6)octahedrons,they exhibit vast complexity and remarkable tunability.We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations.Furthermore,we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models.Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03030001)the National Natural Science Foundation of China (Grant No.12075283)。
文摘Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
文摘We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.
文摘We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net work algorithm. The phase transition points are shown in the entanglement entropy figure. The results are agreed with the phase diagram.
基金Project supported by the National Natural Science Foundation of China(Grant No.11375005)partially by 20150964-SIP-IPN,Mexico
文摘Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
文摘The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Kolmogorov's entropy, the fractional dimension D = 7.7-7.9 and the positive value K2 - 0.1 are obtained. This shows that the attractor for the short-term weather evolution in the monsoon region of China exhibits a chaotic motion. The estimate of K2 yields a predictable time scale of about ten days. This result is in agreement with that obtained earlier by the dynamic-statistical approach.The effects of the lag time i on the estimate of D and K2 are investigated. The results show that D and K2 are convergent with respect to i. The day to day averaged pressure series used in this paper are treated for the extensive phase space with T = 5, the coordinate components are independent of each other; therefore, the dynamical character quantities of the system are stable and reliable.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金supported by the National Natural Science Foundation of China(Nos.52071176,12072331,51771090,51671103)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China.
文摘The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The results suggest that yield strength increases and then decreases with the increment of Ti content.The Ti_(60)(AlVCr)_(40)alloy has the best combination of high strength of 1204 MPa and uniform plastic strain of 70%,possessing a high specific yield strength of 255 MPa·cm^(3)/g.The enhancement of strength is mainly attributed to the synergic effects of solid-solution and coherent nano-precipitation strengthening,while dislocation motion such as dislocation pinning,entanglement and dislocation cells significantly increases the strain-hardening capacity.
基金Project (2012CB932800) supported by the National Basic Research Program of ChinaProject (2012M521330) supported by China Postdoctoral Science Foundation
文摘The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications.
基金The authors acknowledge the support from the National Major Project of Fundamental Research:Nanomaterials and Nanostructures(Grant No.2005CB623603)the National Natural Science Foundation of China(Grant No.10304018,10574131)the Special Fund for President Scholarship,Chinese Academy of Sciences.We also thank Dr.Liang LI,Prof.Changhui YE,Dr.Yufeng HA0,Dr.Xinsheng PENG,Dr.Shuhui SUN,Dr.Changhao LIANG,Mr.Peng YAN,Prof.Guowen MENG,and Prof.Guanghui LI for their helps in the preparation of this manuscript.
文摘This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of ID oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area.
基金Project supported by the National Key R&D Program of China (Grant No. 2017YFC1405605)the Innovation Youth Fund of the Ocean Telemetry Technology Innovation Center of the Ministry of Natural Resources, China (Grant No. 21k20190088)+1 种基金the Natural Science Foundation of Inner Mongolia, China (Grant No. 2018MS01005)the Graduate Students' Scientific Research Innovation Program of Inner Mongolia Normal University (Grant No. CXJJS19098).
文摘By constructing a new conformal mapping function, we study the surface effects on six edge nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional (1D) hexagonal piezoelectric quasicrystals under anti-plane shear. Based on the Gurtin–Murdoch surface/interface model and complex potential theory, the exact solutions of phonon field, phason field and electric field are obtained. The analytical solutions of the stress intensity factor of the phonon field, the stress intensity factor of the phason field, the electric displacement intensity factor and the energy release rate are given. The interaction effects of the nano-cracks and nano-hole on the stress intensity factor of the phonon field, the stress intensity factor of the phason field and the electric displacement intensity factor are discussed in numerical examples. It can be seen that the surface effect leads to the coupling of phonon field, phason field and electric field. With the decrease of cavity size, the influence of surface effect is more obvious.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11262017,11262012,and 11462020)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2015MS0129)+1 种基金the Programme of Higher-level Talents of Inner Mongolia Normal University(Grant No.RCPY-2-2012-K-035)the Key Project of Inner Mongolia Normal University(Grant No.2014ZD03)
文摘Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals.Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack,as well as the force on dislocation.The derivation is based on the conformal mapping method and the perturbation technique.The influences of the wedge angle and dislocation location on the image force are also discussed.The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones.
基金The authors acknowledge the support from the National Major Project of Fundamental Research:Nanomaterials and Nanostructures(Grant No.2005CB623603)the National Natural Science Foundation of China(Grant Nos.10304018,10574131)Special Fund for President Scholarship,Chinese Academy of Sciences.
文摘One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale electric and optoelectronic devices. Zinc sulfide (ZnS) is an important semiconductor compound of Ⅱ-Ⅵ group, and the synthesis of 1D ZnS nanomaterials and nanostructures has been of growing interest owing to their promising application in nanoscale optoelectronic devices. This paper reviews the recent progress on 1D ZnS nanomaterials and nanostructures, including nanowires, nanowire arrays, nanorods, nanobelts or nanoribbons, nanocables, and hierarchical nanostructures etc. This article begins with a survey of various methods that have been developed for generating 1D nanomaterials and nanostructures, and then mainly focuses on structures, synthesis, characterization, formation mechanisms and optical property tuning, and luminescence mechanisms of 1D ZnS nanomaterials and nanostructures. Finally, this review concludes with personal views towards future research on 1D ZnS nanomaterials and nanostructures.
基金Projects(50878191,51109092)supported by the National Natural Science Foundation of China
文摘Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.
基金supported by the National Natural Science Foundation of China(Nos.51725101,11727807,51672050,61790581,22088101)the Ministry of Science and Technology of China(973 Project Nos.2018YFA0209102 and 2021YFA1200600)Infrastructure and Facility Construction Project of Zhejiang Laboratory.
文摘Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant challenge.In this study,a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method.The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique,indicating the excellent magnetic loss ability under an external EM field.Then,the in-depth analysis shows that many factors,including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy,primarily contribute to the enhanced EM wave absorption performance.Therefore,the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm.Thus,this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.
基金supported by the National Natural Science Foundation of China (Grant No 10761005)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010104)
文摘Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.