期刊文献+
共找到2,451篇文章
< 1 2 123 >
每页显示 20 50 100
One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption 被引量:8
1
作者 Bintong Yang Jiefeng Fang +7 位作者 Chunyang Xu Hui Cao Ruixuan Zhang Biao Zhao Mengqiu Huang Xiangyu Wang Hualiang Lv Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期260-272,共13页
Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant chal... Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant challenge.In this study,a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method.The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique,indicating the excellent magnetic loss ability under an external EM field.Then,the in-depth analysis shows that many factors,including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy,primarily contribute to the enhanced EM wave absorption performance.Therefore,the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm.Thus,this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers. 展开更多
关键词 Medium-entropy magnetic alloy one-dimension Off-axis electronic holography technique Improved electrospinning Lower-frequency electromagnetic wave absorption
下载PDF
Enhancing the resolution of sparse rock property measurements using machine learning and random field theory 被引量:1
2
作者 Jiawei Xie Jinsong Huang +3 位作者 Fuxiang Zhang Jixiang He Kaifeng Kang Yunqiang Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3924-3936,共13页
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad... The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China. 展开更多
关键词 Wireline logs Core characterization Compressional wave travel time Machine learning Random field theory
下载PDF
STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY 被引量:3
3
作者 何躏 唐少君 王涛 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期34-48,共15页
We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of th... We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument. 展开更多
关键词 viscous shock waves density-dependent viscosity one-dimensional compress-ible Navier-Stokes equations nonlinear stability large density oscillation
下载PDF
Robust Damage Detection and Localization Under Complex Environmental Conditions Using Singular Value Decomposition-based Feature Extraction and One-dimensional Convolutional Neural Network
4
作者 Shengkang Zong Sheng Wang +3 位作者 Zhitao Luo Xinkai Wu Hui Zhang Zhonghua Ni 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期252-261,共10页
Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of ci... Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC. 展开更多
关键词 Ultrasonic guided waves Singular value decomposition Damage detection and localization Environmental and operational conditions one-dimensional convolutional neural network
下载PDF
Linear and Nonlinear Stokes Waves Theory: Numerical Hydrodynamic and Energy Studies
5
作者 Alpha Malick Ndiaye Fadel Diop +1 位作者 Samba Dia Cheikh Mbow 《Open Journal of Fluid Dynamics》 CAS 2023年第1期61-79,共19页
The increase of wave energy in electricity production is an objective shared by many countries to meet growing demand and global warming. To analyze devices capable of converting the energy of sea waves into electrica... The increase of wave energy in electricity production is an objective shared by many countries to meet growing demand and global warming. To analyze devices capable of converting the energy of sea waves into electrical energy, it is important to master the various theories of gravity waves and generation. We will in our work consider a numerical waves tank for an amplitude A=0.5, a wavelength λ=0.25 , an average height H<sub>e</sub>=10 and a Froude number fixed at 1 × 10<sup>5</sup>. Numerical wave channel analysis is used to reproduce the natural phenomenon of wave propagation in an experimental model. Wave makers are usually used to generate waves in the channel. In theory, the influence of an incident wave can be considered, as in the case of our study. In this study, the evolution of the hydrodynamic parameters and the energy transported in one wavelength can be determined by calculation. A change of variable will be done in this work to facilitate the writing of the boundary conditions at the free surface and at the bottom. The nonlinear Stokes theory will be studied in this case in order to provide hydrodynamic solutions through the Navier-Stokes equations to finally deduce the energetic results. To do this, the finite difference method will be used for the hydrodynamic results such as the velocity potential and the free surface elevation and the trapezium method of Newton for the energetic results. Thus, we will determine the energetic potential according to the decrease in the slope of the tank. To do this, we will take as values of beta representing the inverse of the slope of the tank, β=100, β=105, β=110 and β=105. . 展开更多
关键词 waves Tank ENERGY waveS Gravity waves Navier-Stokes NUMERICAL Nonlinear Stokes theory
下载PDF
Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory
6
作者 Xinte WANG Juan LIU +2 位作者 Biao HU Bo ZHANG Huoming SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1821-1840,共20页
This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is ... This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is simulated by the honeycomb-shaped symmetrical and asymmetrical distribution functions.The nonlocal strain gradient theory(NSGT) and first-order shear deformation theory are used to determine the size effect and shear deformation,respectively.Nonlocal governing equations are derived for the nanoshells by Hamilton's principle.The resulting dimensionless differential equations are solved by means of an analytical solution of the combined exponential function after dimensionless treatment.Finally,extensive parametric surveys are conducted to investigate the influence of diverse parameters,such as dimensionless scale parameters,radiusto-thickness ratios,bi-directional functionally graded(FG) indices,porosity coefficients,and dimensionless electromagnetic potentials on the wave propagation characteristics.Based on the analysis results,the effect of the dimensionless scale parameters on the dispersion relationship is found to be related to the ratio of the scale parameters.The wave propagation characteristics of nanoshells in the presence of a magnetoelectric field depend on the bi-directional FG indices. 展开更多
关键词 bi-directional functionally graded(FG) wave propagation dimensionless magneto-electro-elastic(MEE)nanoshell nonlocal strain gradient theory(NSGT) porosity
下载PDF
NONLINEAR STABILITY OF VISCOUS SHOCK WAVES FOR ONE-DIMENSIONAL NONISENTROPIC COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL PERTURBATION 被引量:1
7
作者 Shaojun TANG Lan ZHANG +2 位作者 School of Mathematics and Statistics Wuhan University 《Acta Mathematica Scientia》 SCIE CSCD 2018年第3期973-1000,共28页
We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous... We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space. 展开更多
关键词 one-dimensional nonisentropic compressible Navier–Stokes equations viscous shock waves nonlinear stability large initial perturbation
下载PDF
Comparisons of Wave Force Model Effects on the Structural Responses and Fatigue Loads of a Semi-Submersible Floating Wind Turbine
8
作者 HAN Yanqing LE Conghuan +1 位作者 ZHANG Puyang XU Shengnan 《Journal of Ocean University of China》 CAS CSCD 2024年第1期69-79,共11页
The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a ... The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses. 展开更多
关键词 floating wind turbine wave force model potential flow theory Morison equation second-order wave forces
下载PDF
Modeling and Performance Analysis of UAV-Aided Millimeter Wave Cellular Networks with Stochastic Geometry
9
作者 Li Junruo Wang Yuanjie +2 位作者 Cui Qimei Hou Yanzhao Tao Xiaofeng 《China Communications》 SCIE CSCD 2024年第6期146-162,共17页
UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power... UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs. 展开更多
关键词 average rate DOWNLINK millimeter wave point process theory SIR stochastic geometry UAVaided cellular networks
下载PDF
Hydrodynamic Performance of An Integrated System of Breakwater and A Multi-Chamber OWC Wave Energy Converter
10
作者 NING De-zhi ZHANG Xiang-yu +1 位作者 WANG Rong-quan ZHAO Ming 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期543-556,共14页
A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the line... A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth. 展开更多
关键词 oscillating water column power extraction efficiency potential flow theory wave energy converter multi-chamber
下载PDF
One-Dimensional Scanning of Electronic Wavefunction in Carbon Nanotubes by Molecular Encapsulation
11
作者 Gui Ye Jun Li +1 位作者 Ming-sen Deng Jun Jiang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第6期-,共5页
关键词 Single-walled carbon nanotube Molecular container one-dimensional electron wavefunction distribution Density functional theory
下载PDF
Parametric Instabilities of Parallel Propagating Circularly Polarized Alfven Waves:One-Dimensional Hybrid Simulations
12
作者 何鹏 高新亮 +1 位作者 陆全明 赵金松 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期85-91,共7页
By performing one-dimensional (l-D) hybrid simulations, we analyze in detail the parametric instabilities of the Alfv^n waves with a spectrum in a low beta plasma. The parametric instabilities experience two stages.... By performing one-dimensional (l-D) hybrid simulations, we analyze in detail the parametric instabilities of the Alfv^n waves with a spectrum in a low beta plasma. The parametric instabilities experience two stages. In the first stage, the density modes are excited and immediately couple with the pump Alfv6n waves. In the second stage, each pump Alfv^n wave decays into a density mode and a daughter Alfv6n mode similar to the monochromatic cases. Ftlrthermore, the proton velocity beam will also be formed after the saturation of the parametric instabilities. When the plasma beta is high, the parametric decay in the second stage will be strongly suppressed. 展开更多
关键词 Parametric Instabilities of Parallel Propagating Circularly Polarized Alfven waves:one-dimensional Hybrid Simulations FIGURE
下载PDF
Analysis of the Electromagnetic Characteristics and the Mechanism Underlying Bio-Medical Function of Longitudinal Electromagnetic (LEM) Waves
13
作者 Jianzhong Jiang Yufeng Wang 《Journal of Power and Energy Engineering》 2024年第10期31-49,共19页
Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, ta... Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, taking them as the fundamental equations, the wave equation and energy equation of LEM waves are established, and a new electromagnetic wave propagation mode based on the mutual induction of scalar electromagnetic fields/vortex magneto-electric fields, which was overlooked in current Maxwell’s equations, are put forward. Moreover, through theoretical derivation based on vacuum LEM waves, the Maxwell’s equations of the gravitational field generated by vacuum LEM waves, the wave equations of the electromagnetic scalar potential/magnetic vector potential and the constraint equation governing the wave phase-velocities between LEM/TEM waves are discovered. Finally, on the basis of these theoretical research results, the electromagnetic properties of vacuum LEM waves are analyzed in detail, encompassing the speed of light, harmless penetrability to the human body, absorption and stable storage by water, the possibility of generating artificial gravitational fields, and the capability of extracting free energy. This reveals the medical functional mechanism of LEM waves and establishes a solid theoretical basis for the application of LEM waves in the fields of medicine and energy. 展开更多
关键词 QED (Quantum Electrodynamics) Longitudinal Electromagnetic wave Maxwell’s Equations Electromagnetic Induction Artificial Gravitational Field Unified Field theory
下载PDF
Comparison of Linear Level I Green-Naghdi Theory with Linear Wave Theory for Prediction of Hydroelastic Responses of VLFS 被引量:5
14
作者 宋皓 崔维成 刘应中 《China Ocean Engineering》 SCIE EI 2002年第3期283-300,共18页
Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate... Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate estimation of their hydroelastic responses to waves is very important for the design. Recently, an efficient numerical algorithm was developed by Ertekin and Kim (1999). However, in their analysis, the linear Level I Green-Naghdi (GN) theory is employed to describe fluid dynamics instead of the conventional linear wave (LW) theory of finite water depth. They claimed that this linear level I GN theory provided better predictions of the hydroelastic responses of VLFS than the linear wave theory. In this paper, a detailed derivation is given in the conventional linear wave theory framework with the same quantity as used in the linear level I GN theory framework. This allows a critical comparison between the linear wave theory and the linear level I GN theory. It is found that the linear level I GN theory can be regarded as an approximation to the linear wave theory of finite water depth. The consequences of the differences between these two theories in the predicted hydroelastic responses are studied quantitatively. And it is found that the linear level I GN theory is not superior to the linear wave theory. Finally, various factors affecting the hydroelastic response of VLFS are studied with the implemented algorithm. 展开更多
关键词 hydroelastic responses very large floating structures linear wave theory of finite water depth linear level I Green-Naghdi theory thin plate theory
下载PDF
Unified Water Gravity Wave Theory and Improved Linear Wave 被引量:3
15
作者 Fu Yuhua Senior Engineer, Structural Engineering Department, China Offshore Oil Development and Engineering Corp., Beijing 《China Ocean Engineering》 SCIE EI 1992年第1期57-64,共8页
Based on Least Square Method, this paper presents variational principle for handling various water gravity wave theories and the unified water gravity wave theory was given. By using this variational principle of unif... Based on Least Square Method, this paper presents variational principle for handling various water gravity wave theories and the unified water gravity wave theory was given. By using this variational principle of unified water wave theory, two kinds of improved linear waves were derived. The first one uses the same boundary conditions which were applied to derive 5-order Stokes wave. The second one uses the accurate boundary conditions (Eqs. 11 and 12). The two improved linear waves were compared with the existing linear wave. 展开更多
关键词 wave unified theory improved linear wave
下载PDF
On solitary waves.Part 2 A unified perturbation theory for higher-order waves 被引量:3
16
作者 Theodore Yaotsu Wu Xinlong Wang Wendong Qu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第6期515-530,共16页
A unified perturbation theory is developed here for calculating solitary waves of all heights by series expansion of base flow variables in powers of a small base parameter to eighteenth order for the one-parameter fa... A unified perturbation theory is developed here for calculating solitary waves of all heights by series expansion of base flow variables in powers of a small base parameter to eighteenth order for the one-parameter family of solutions in exact form, with all the coefficients determined in rational numbers. Comparative studies are pursued to investigate the effects due to changes of base parameters on (i) the accuracy of the theoretically predicted wave properties and (ii) the rate of convergence of perturbation expansion. Two important results are found by comparisons between the theoretical predictions based on a set of parameters separately adopted for expansion in turn. First, the accuracy and the convergence of the perturbation expansions, appraised versus the exact solution provided by an earlier paper [1] as the standard reference, are found to depend, quite sensitively, on changes in base parameter. The resulting variations in the solution are physically displayed in various wave properties with differences found dependent on which property (e.g. the wave amplitude, speed, its profile, excess mass, momentum, and energy), on what range in value of the base, and on the rank of the order n in the expansion being addressed. Secondly, regarding convergence, the present perturbation series is found definitely asymptotic in nature, with the relative error δ (n) (the relative mean-square difference between successive orders n of wave elevations) reaching a minimum, δm at a specific order, n = n both depending on the base adopted, e.g. nm,α= 11-12 based on parameter α (wave amplitude), nm,δ = 15 on δ (amplitude-speed square ratio), and nm.ε= 17 on ε ( wave number squared). The asymptotic range is brought to completion by the highest order of n = 18 reached in this work. 展开更多
关键词 Solitary waves on water Unified perturbation theory Base functions Base parameters Asymptotic representation
下载PDF
A unified intrinsic functional expansion theory for solitary waves 被引量:3
17
作者 Theodore Yaotsu Wu John Kao Jin E.Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第1期1-15,共15页
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> do... A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record. 展开更多
关键词 Solitary waves on water Unified intrinsic functional expansion theory Exact solutions High-accuracy computation of waves of arbitrary height Mass and energy transfer
下载PDF
Wall Effect of Underwater Explosion Load Based on Wave Motion Theories 被引量:2
18
作者 肖巍 姚熊亮 郭君 《China Ocean Engineering》 SCIE EI CSCD 2014年第5期587-598,共12页
Owing to the existence of the flow field boundary, the shock wave load near the boundary is different from the freefield shock wave load. In the present paper, the hull plate load subjected to underwater shock wave is... Owing to the existence of the flow field boundary, the shock wave load near the boundary is different from the freefield shock wave load. In the present paper, the hull plate load subjected to underwater shock wave is investigated based onwave motion theories; in addition, the experimental study of the hull plate load is carried out. According to the theoreticalanalysis of the hull plate pressure, we find that the hull plate pressure oscillates repeatedly and decays rapidly with timepassing, the maximum hull plate pressure is 2/(1+n) times the maximum free field pressure, where n is the ratio ofimpedance, and the impulse is much smaller than the free field impulse. Compared with the experimental study, thetheoretical results agree well with the experimental data. 展开更多
关键词 underwater explosion wave motion theories wall effect IMPEDANCE EXPERIMENT
下载PDF
Nonlinear analytical solution for one-dimensional consolidation of soft soil under cyclic loading 被引量:4
19
作者 XIE Kang-he QI Tian DONG Ya-qin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1358-1364,共7页
This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Ra... This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Raymond (1965) that the decrease in permeability is proportional to the decrease in compressibility during the consolidation process of the soil and that the distribution of initial effective stress is constant with depth the solution obtained, some diagrams are prepared and the It is verified by the existing analytical solutions in special cases. Using telex ant consolidation behavior is investigated. 展开更多
关键词 one-dimensional (1 D) consolidation Nonlinear consolidation theory Analytical solution Cyclic loading
下载PDF
Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory 被引量:3
20
作者 M.MOHAMMADIMEHR M.J.FARAHI S.ALIMIRZAEI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1375-1392,共18页
In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement... In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at micro-scale. Finally, using an energy method and Hamilton's principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave prop- agation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is in- versely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency. 展开更多
关键词 vibration and wave propagation analysis twisted micro-beam strain gradient theory (SGT) rate of twist angle
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部