In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat...In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.展开更多
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibrati...A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.展开更多
Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i...Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system.展开更多
The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficu...The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.展开更多
The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n tim...The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n time state vector. An estimating algorithm, is developed from this to solve the problem of active control with time delay compensation. The estimating algorithm based on this high order single step β method (HSM) foundation, is proven by simulation and experiment analysis, to be a valid solution to problem of active control with time delay compensation.展开更多
There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in dire...There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.展开更多
Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with ...Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.展开更多
A new hybrid numerical scheme of combining an E-CUSP(Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport(CT) for the magnetic induction part is proposed.In order to avo...A new hybrid numerical scheme of combining an E-CUSP(Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport(CT) for the magnetic induction part is proposed.In order to avoid the occurrence of negative pressure in the reconstructed profiles and its updated value,a positivity preserving method is provided.Furthermore,the MHD equations are solved at each physical time step by advancing in pseudo time.The use of dual time stepping is beneficial in the computation since the use of dual time stepping allows the physical time step not to be limited by the corresponding values in the smallest cell and to be selected based on the numerical accuracy criterion.This newly established hybrid scheme combined with positivity preserving method and dual time technique has demonstrated the accurateness and robustness through numerical experiments of benchmark problems such as the 2D Orszag-Tang vortex problem and the3 D shock-cloud interaction problem.展开更多
A multiple time step algorithm, called reversible reference system propagator algorithm, is introduced for the long time molecular dynamics simulation. In contrast to the conventional algorithms, the multiple time met...A multiple time step algorithm, called reversible reference system propagator algorithm, is introduced for the long time molecular dynamics simulation. In contrast to the conventional algorithms, the multiple time method has better convergence, stability and efficiency. The method is validated by simulating free relaxation and the hypervelocity impact of nano-clusters. The time efficiency of the multiple time step method enables us to investigate the long time interaction between lattice dislocations and low-angle grain boundaries.展开更多
The numerical time step integrations of PDEs are mainly carried out by the finitedifference method to date. However,when the time step becomes longer, it causes theproblem of numerical instability,. The explicit integ...The numerical time step integrations of PDEs are mainly carried out by the finitedifference method to date. However,when the time step becomes longer, it causes theproblem of numerical instability,. The explicit integration schemes derived by the singlepoint precise integration method given in this paper are proved unconditionally stable.Comparisons between the schemes derived by the finite difference method and theschemes by the method employed in the present paper are made for diffusion andconvective-diffusion equations. Nunierical examples show the superiority of the singlepoint integration method.展开更多
This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertaint...This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers.展开更多
This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structu...This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by coevolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series.展开更多
Unit hydrograph is a very practical tool in runoff prediction which has been used since decades ago and to date it remains useful. Unit hydrograph method is applied in Way Kuala Garuntang, an ungauged catchment in Lam...Unit hydrograph is a very practical tool in runoff prediction which has been used since decades ago and to date it remains useful. Unit hydrograph method is applied in Way Kuala Garuntang, an ungauged catchment in Lampung Province, Indonesia. To derive an observed unit hydrograph it requires rainfall and water level data with fine time scale which are obtained from automatic gauges. Observed unit hydrograph has an advantage that it is possible to derive it for various time steps including those with time step less than an hour. In order to get a more accurate unit hydrograph, it is necessary to derive a unit hydrograph with small time step for a small catchment such as those used in this study. The study area includes Way Kuala Garuntang and its tributaries, i.e. Way Simpur, Way Awi with areas are 60.52 km2, 3.691 km2, and 9.846 km2 respectively. The results of this study highlight the importance of time step selection on unit hydrograph, which are shown to have a significant impact on the resulting unit hydrograph’s variables such as peak discharge and time to peak.展开更多
With the cell vertex finite volume discretization in space and second order backward implicit discretization in time, 2D unsteady Navier Stokes equations are solved by a dual time stepping method to simulate compr...With the cell vertex finite volume discretization in space and second order backward implicit discretization in time, 2D unsteady Navier Stokes equations are solved by a dual time stepping method to simulate compressible viscous flow around rigid airfoils in arbitrary unsteady motion. The selection of physical time step is not restricted by stability condition any more, and most of the successful acceleration techniques used in steady calculations can be implemented to increase the computation efficiency.展开更多
The correlation between the initial time value of transient iterative parameters and the blowing pressure in the numerical simulation process of blowing balloon is investigated by POLYFLOW. The results show that: 1) A...The correlation between the initial time value of transient iterative parameters and the blowing pressure in the numerical simulation process of blowing balloon is investigated by POLYFLOW. The results show that: 1) As the blow molding pressure increases, the boundary value of the iterative time step decreases rapidly at first and then slowly. At the end of the first step of iterative calculation for each boundary value, the balloon parison is in the mold core cavity. 2) If the initial time value of transient iterative parameters is smaller than the boundary value of the iterative time step, the balloon parison is still in the mold core cavity at the end of the first iteration. However, if the iterative calculation continues, the calculation process may be interrupted when the time step is smaller than the initial time value of the transient iterative parameters, which makes the blow molding simulation of balloon unable to continue. 3) It is suggested that the initial time value of transient iterative parameters is one order of magnitude smaller than the boundary value of the iterative time step to complete smoothly the simulation of blow molding balloon.展开更多
This paper focuses on the study of the stability of explicit time integration algorithm for dynamic problem by the Extended Finite Element Method(XFEM).A new enrichment scheme of crack tip is proposed within the frame...This paper focuses on the study of the stability of explicit time integration algorithm for dynamic problem by the Extended Finite Element Method(XFEM).A new enrichment scheme of crack tip is proposed within the framework of XFEM.Then the governing equations are derived and evolved into the discretized form.For dynamic problem,the lumped mass and the explicit time algorithm are applied.With different grid densities and different forms of Newmark scheme,the Dynamic Stress Intensity Factor(DSIF)is computed by using interaction integral approach to reflect the dynamic response.The effectiveness of the proposed scheme is demonstrated through the numerical examples,and the critical time stepping in different situations are listed and analyzed to illustrate the factors that affect stability.展开更多
The heat transfer during the casting solidification process includes the heat radiation of the high temperature casting and the mold,the heat convection between the casting and the mold,and the heat conduction inside ...The heat transfer during the casting solidification process includes the heat radiation of the high temperature casting and the mold,the heat convection between the casting and the mold,and the heat conduction inside the casting and from the casting to the mold. In this paper,a formula of time step in simulation of solidification is derived,considering the heat radiation,convection and conduction based on the conservation of energy. The different heat transfer conditions between the conventional sand casting and the permanent mold casting are taken into account in this formula. The characteristics of heat transfer in the interior and surface of the casting are also considered. The numerical experiments show that this formula can avoid computational dispersion,and improve the computational efficiency by about 20% in the simulation of solidification process.展开更多
This paper focuses on the study of the stability of explicit time integration algorithm for dynamic problem by the Extended Finite Element Method(XFEM).A new enrichment scheme of crack tip is proposed within the frame...This paper focuses on the study of the stability of explicit time integration algorithm for dynamic problem by the Extended Finite Element Method(XFEM).A new enrichment scheme of crack tip is proposed within the framework of XFEM.Then the governing equations are derived and evolved into the discretized form.For dynamic problem,the lumped mass and the explicit time algorithm are applied.With different grid densities and different forms of Newmark scheme,the Dynamic Stress Intensity Factor(DSIF)is computed by using interaction integral approach to reflect the dynamic response.The effectiveness of the proposed scheme is demonstrated through the numerical examples,and the critical time stepping in different situations are listed and analyzed to illustrate the factors that affect the numerical stability.展开更多
基金supported in part by the Gansu Province Higher Education Institutions Industrial Support Program:Security Situational Awareness with Artificial Intelligence and Blockchain Technology.Project Number(2020C-29).
文摘In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.
基金supported by the National Natural Science Foundation of China(Grant No.51079157)
文摘A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.
文摘Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system.
基金financial support from Hunan Provincial Natura1 Science Foundation of China,Grant Number:02JJY2085,for this study
文摘The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.
文摘The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n time state vector. An estimating algorithm, is developed from this to solve the problem of active control with time delay compensation. The estimating algorithm based on this high order single step β method (HSM) foundation, is proven by simulation and experiment analysis, to be a valid solution to problem of active control with time delay compensation.
文摘There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.
基金Hundred Talent Program of Chinese Academy of Sciences under Grant No. 0300YQ000101. Partly supported by the National Natural Sci
文摘Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.
基金Supported by the National Basic Research Program of China(2012CB825601)the National Natural Science Foundationof China(41031066,41231068,41274192,41074121,41204127)+1 种基金the Knowledge Innovation Program of the ChineseAcademy of Sciences(KZZD-EW-01-4)the Specialized Research Fund for State Key Laboratories
文摘A new hybrid numerical scheme of combining an E-CUSP(Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport(CT) for the magnetic induction part is proposed.In order to avoid the occurrence of negative pressure in the reconstructed profiles and its updated value,a positivity preserving method is provided.Furthermore,the MHD equations are solved at each physical time step by advancing in pseudo time.The use of dual time stepping is beneficial in the computation since the use of dual time stepping allows the physical time step not to be limited by the corresponding values in the smallest cell and to be selected based on the numerical accuracy criterion.This newly established hybrid scheme combined with positivity preserving method and dual time technique has demonstrated the accurateness and robustness through numerical experiments of benchmark problems such as the 2D Orszag-Tang vortex problem and the3 D shock-cloud interaction problem.
基金The project supported by the National Natural Science Foundation of China(the 973 Project 2004CB619304).
文摘A multiple time step algorithm, called reversible reference system propagator algorithm, is introduced for the long time molecular dynamics simulation. In contrast to the conventional algorithms, the multiple time method has better convergence, stability and efficiency. The method is validated by simulating free relaxation and the hypervelocity impact of nano-clusters. The time efficiency of the multiple time step method enables us to investigate the long time interaction between lattice dislocations and low-angle grain boundaries.
文摘The numerical time step integrations of PDEs are mainly carried out by the finitedifference method to date. However,when the time step becomes longer, it causes theproblem of numerical instability,. The explicit integration schemes derived by the singlepoint precise integration method given in this paper are proved unconditionally stable.Comparisons between the schemes derived by the finite difference method and theschemes by the method employed in the present paper are made for diffusion andconvective-diffusion equations. Nunierical examples show the superiority of the singlepoint integration method.
文摘This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers.
基金Project supported by the State Key Program of National Natural Science of China (Grant No 30230350)the Natural Science Foundation of Guangdong Province,China (Grant No 07006474)
文摘This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by coevolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series.
文摘Unit hydrograph is a very practical tool in runoff prediction which has been used since decades ago and to date it remains useful. Unit hydrograph method is applied in Way Kuala Garuntang, an ungauged catchment in Lampung Province, Indonesia. To derive an observed unit hydrograph it requires rainfall and water level data with fine time scale which are obtained from automatic gauges. Observed unit hydrograph has an advantage that it is possible to derive it for various time steps including those with time step less than an hour. In order to get a more accurate unit hydrograph, it is necessary to derive a unit hydrograph with small time step for a small catchment such as those used in this study. The study area includes Way Kuala Garuntang and its tributaries, i.e. Way Simpur, Way Awi with areas are 60.52 km2, 3.691 km2, and 9.846 km2 respectively. The results of this study highlight the importance of time step selection on unit hydrograph, which are shown to have a significant impact on the resulting unit hydrograph’s variables such as peak discharge and time to peak.
文摘With the cell vertex finite volume discretization in space and second order backward implicit discretization in time, 2D unsteady Navier Stokes equations are solved by a dual time stepping method to simulate compressible viscous flow around rigid airfoils in arbitrary unsteady motion. The selection of physical time step is not restricted by stability condition any more, and most of the successful acceleration techniques used in steady calculations can be implemented to increase the computation efficiency.
文摘The correlation between the initial time value of transient iterative parameters and the blowing pressure in the numerical simulation process of blowing balloon is investigated by POLYFLOW. The results show that: 1) As the blow molding pressure increases, the boundary value of the iterative time step decreases rapidly at first and then slowly. At the end of the first step of iterative calculation for each boundary value, the balloon parison is in the mold core cavity. 2) If the initial time value of transient iterative parameters is smaller than the boundary value of the iterative time step, the balloon parison is still in the mold core cavity at the end of the first iteration. However, if the iterative calculation continues, the calculation process may be interrupted when the time step is smaller than the initial time value of the transient iterative parameters, which makes the blow molding simulation of balloon unable to continue. 3) It is suggested that the initial time value of transient iterative parameters is one order of magnitude smaller than the boundary value of the iterative time step to complete smoothly the simulation of blow molding balloon.
基金The authors are grateful to the National Natural Science Foundation of China(No.11672101,No.11372099)the 12th Five-Year Supporting Plan Issue(No.2015BAB07B10)+1 种基金Jiangsu Province Natural Science Fund Project(No.BK20151493)the Postgraduate Research and Innovation Projects in Jiangsu Province(No.2014B31614)for the financial support.
文摘This paper focuses on the study of the stability of explicit time integration algorithm for dynamic problem by the Extended Finite Element Method(XFEM).A new enrichment scheme of crack tip is proposed within the framework of XFEM.Then the governing equations are derived and evolved into the discretized form.For dynamic problem,the lumped mass and the explicit time algorithm are applied.With different grid densities and different forms of Newmark scheme,the Dynamic Stress Intensity Factor(DSIF)is computed by using interaction integral approach to reflect the dynamic response.The effectiveness of the proposed scheme is demonstrated through the numerical examples,and the critical time stepping in different situations are listed and analyzed to illustrate the factors that affect stability.
基金The project is supported by the National Natural Science Foundation of China. (Grant No. 50605024).
文摘The heat transfer during the casting solidification process includes the heat radiation of the high temperature casting and the mold,the heat convection between the casting and the mold,and the heat conduction inside the casting and from the casting to the mold. In this paper,a formula of time step in simulation of solidification is derived,considering the heat radiation,convection and conduction based on the conservation of energy. The different heat transfer conditions between the conventional sand casting and the permanent mold casting are taken into account in this formula. The characteristics of heat transfer in the interior and surface of the casting are also considered. The numerical experiments show that this formula can avoid computational dispersion,and improve the computational efficiency by about 20% in the simulation of solidification process.
基金the National Natural Science Foundation of China(No.11672101,No.11372099)the 12th Five-Year Supporting Plan Issue(No.2015 BAB07B10)+1 种基金Jiangsu Province Natural Science Fund Project(No.BK 20151493)the Postgraduate Research and Innovation Projects in Jiangsu Province(No.2014B 31614)for the financial support.
文摘This paper focuses on the study of the stability of explicit time integration algorithm for dynamic problem by the Extended Finite Element Method(XFEM).A new enrichment scheme of crack tip is proposed within the framework of XFEM.Then the governing equations are derived and evolved into the discretized form.For dynamic problem,the lumped mass and the explicit time algorithm are applied.With different grid densities and different forms of Newmark scheme,the Dynamic Stress Intensity Factor(DSIF)is computed by using interaction integral approach to reflect the dynamic response.The effectiveness of the proposed scheme is demonstrated through the numerical examples,and the critical time stepping in different situations are listed and analyzed to illustrate the factors that affect the numerical stability.