Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl...Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl) -[ 1, 3, 4 ] oxadiazol-2-yl ] -phenyl }-vinyl ) -carbazole ( 2 ) are synthesized through Wittig reaction and characterized by nuclear magnetic resonance(NMR)and infrared(IR). The two- photon absorption properties of chromophores are investigated. These chromophores exhibit large two-photon absorption crosssections and strong blue two-photon excited fluorescence. The cooperative enhancement of two-photon absorption(TPA) in the multi-branched structures is observed. This enhancement is partly attributed to the electronic coupling between the branches. The electronic push-pull structures in the arm and their cooperative effects help the extended charge transfer for TPA.展开更多
Two new bithiophene derivatives named as 5, 5-bis(p-N,N-dimethylaminostyryl)-2, 2 -bithiophene (BMSBT), and 5, 5-bis(p-N,N-diethylaminostyryl)-2, 2-bithiophene (BESBT) have been synthesized. Both compounds can emit s...Two new bithiophene derivatives named as 5, 5-bis(p-N,N-dimethylaminostyryl)-2, 2 -bithiophene (BMSBT), and 5, 5-bis(p-N,N-diethylaminostyryl)-2, 2-bithiophene (BESBT) have been synthesized. Both compounds can emit strong single-photon excited fluorescence (SPEF) and two-photon excited fluorescence (TPEF) with the emission peaks around ~560 nm and with the lifetime of ~1ns.展开更多
Apoptosis is very important for the maintenance of cellular homeostasis and is closely related to the occurrence and treatment of many diseases.Mitochondria in cells play a crucial role in programmed cell death and re...Apoptosis is very important for the maintenance of cellular homeostasis and is closely related to the occurrence and treatment of many diseases.Mitochondria in cells play a crucial role in programmed cell death and redox processes.Nicotinamide adenine dinucleotide(NAD(P)H)is the primary producer of energy in mitochondria,changing NAD(P)H can directly reflect the physiological state of mitochondria.Therefore,NAD(P)H can be used to evaluate metabolic response.In this paper,we propose a noninvasive detection method that uses two-photon fluorescence lifetime imaging microscopy(TP-FLIM)to characterize apoptosis by observing the binding kinetics of cellular endogenous NAD(P)H.The result shows that the average fluorescence lifetime of NAD(P)H and the fluorescence lifetime of protein-bound NAD(P)H will be affected by the changing pH,serum content,and oxygen concentration in the cell culture environment,and by the treatment with reagents such as H2O2 and paclitaxel.Taxol(PTX).This noninvasive detection method realized the dynamic detection of cellular endogenous substances and the assessment of apoptosis.展开更多
An electron donor-π-bridge-electron acceptor(D-π-A) optical functional organic compound comprising a triphenylamine moiety as the electron donor and pyridine moiety as the electron acceptor was synthesized. The stru...An electron donor-π-bridge-electron acceptor(D-π-A) optical functional organic compound comprising a triphenylamine moiety as the electron donor and pyridine moiety as the electron acceptor was synthesized. The structure of the compound was solved by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic, space group P21, with a = 9.753(5), b = 8.815(5), c = 25.554(5) ?, β = 96.315(5)°, V = 2184(2) ?~3, Z = 2, D_c = 1.136 g/m^3, F(000) = 792, Μr = 746.92, μ = 0.069 mm^(-1), the final R = 0.0658 and wR = 0.1730 for 6790 observed reflections with I > 2(I). Study of nonlinear optical properties shows that the compound exhibits excellent two-photon excited fluorescence with the two-photon absorption cross-section value of 116 GM. The structure-property relationship was researched in detail through X-ray crystallography and quantum chemical calculation. Result of living cell imaging experiment shows its potential in fluorescence microscopy bioimaging.展开更多
Efficient Ti-catalyzed reductive coupling methodology was first employed to synthesize the symmetrical bis-donor stilbene, trans-4, 4'-bis[diphenyl amino] stilbene (BDPAS). X-ray diffraction analyses reveal that t...Efficient Ti-catalyzed reductive coupling methodology was first employed to synthesize the symmetrical bis-donor stilbene, trans-4, 4'-bis[diphenyl amino] stilbene (BDPAS). X-ray diffraction analyses reveal that this new crystal belongs to the triclinic crystal system of centro-symmetric P-1 space group. The DBPAS solution, with the linear transmission at wavelength of greater than or equal to 450 nm, possesses large two-photon absorption cross section as high as 39.4x10(-48) cm(4).s/photon resulting in strong two-photon induced blue fluorescence of 460 nm, pumped by 740 nm laser irradiation.展开更多
Two new compounds involving a thiophene moiety named as 2,5-bis[4-(N,N- diphenyl- amino)styryl]thiophene (BPST) and 2,5-bis[4-(N,N-diethylamino)styryl]thiophene (BEST) have been synthesized. The two-photon absorptio...Two new compounds involving a thiophene moiety named as 2,5-bis[4-(N,N- diphenyl- amino)styryl]thiophene (BPST) and 2,5-bis[4-(N,N-diethylamino)styryl]thiophene (BEST) have been synthesized. The two-photon absorption cross section of BPST was measured as large as 256 × 10-50 cm4·s/photon, when it was excited by 800 nm femtosecond laser.展开更多
Two new D--A type compounds, where electron-donor D is tertiary amino group, electron-acceptor A is 2-benzothiazolyl and ?is two conjugated styryl units, have been synthesized. They are named as trans, trans-2-{4-[4-(...Two new D--A type compounds, where electron-donor D is tertiary amino group, electron-acceptor A is 2-benzothiazolyl and ?is two conjugated styryl units, have been synthesized. They are named as trans, trans-2-{4-[4-(N, N-diethylamino)styryl]styryl}-1, 3-benzothiazole and trans, trans-2-{4-[4-(N, N-diphenylamino)styryl]styryl}-1, 3-benzothiazole. Both compounds show strong two-photon excited fluorescence in yellow-orange region when excited by a femtosecond laser at 800 nm.展开更多
The synthesis and upconverted fluorescent properties of three novel organic compoundswith the structure: donor/bridge/acceptor are reported. The dyes show strong upconvertedfluorescence.
The two-photon fluorescence properties and ultrafast responses of a hyperbranched polyyne (hb-DPP-J2) with triphenylamine as the central core, Diketo-Pyrrolo-Pyrrole as the connecting unit and electron acceptor are ...The two-photon fluorescence properties and ultrafast responses of a hyperbranched polyyne (hb-DPP-J2) with triphenylamine as the central core, Diketo-Pyrrolo-Pyrrole as the connecting unit and electron acceptor are studied. The polymer has a D-π-A-π-D conjugated structure along the extended polyyne w-bridge systems, and the effective condugated unit repeats itself in the whole hyperbranehed polymer chain. The polymer exhibits a large two-photon absorption cross section and high fluorescence quantum yields. The ultrafast dynamic results give a deep understanding of the excited energy transfer processes under excitation, and reveal a long relaxation lifetime of the intramolecular charge transfer (ICT) state.展开更多
Ischemic stroke is one of the most common causes of mortality and disability worldwide.However,treatment efficacy and the progress of research remain unsatisfactory.As the critical support system and essential compone...Ischemic stroke is one of the most common causes of mortality and disability worldwide.However,treatment efficacy and the progress of research remain unsatisfactory.As the critical support system and essential components in neurovascular units,glial cells and blood vessels(including the bloodbrain barrier)together maintain an optimal microenvironment for neuronal function.They provide nutrients,regulate neuronal excitability,and prevent harmful substances from entering brain tissue.The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis,supporting neuronal function,and reacting to injuries.However,most studies have focused on postmortem animals,which inevitably lack critical information about the dynamic changes that occur after ischemic stroke.Therefore,a high-precision technique for research in living animals is urgently needed.Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions.Twophoton fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure,information on multicellular component interactions,and provide images of structure and function in the cranial window.This technique shifts the existing research paradigm from static to dynamic,from flat to stereoscopic,and from single-cell function to multicellular intercommunication,thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain.In this review,we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy,highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain’s support systems.We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.展开更多
To improve two-photon absorption(TPA)response of a newly synthesized probe,a series of ratiometric two-photon fluorescent Zn^(2+) sensors based on quinoline and DPA moieties have been designed.The one-photon absorptio...To improve two-photon absorption(TPA)response of a newly synthesized probe,a series of ratiometric two-photon fluorescent Zn^(2+) sensors based on quinoline and DPA moieties have been designed.The one-photon absorption,TPA,and emission properties of the experimental and designed probes before and after coordination with Zn^(2+) are investigated employing the density functional theory in combination with response functions.The design consists of two levels.In the first level of design,five probes are constructed through using several electron acceptors or donors to increase accepting or donating ability of the fluorophores.It shows that all the designed probes have stronger TPA intensities at longer wavelengths with respect to the experimental probe because of the increased intra-molecular charge transfer.Moreover,it is found that the probe 4 built by adding an acyl unit has the largest TPA cross section among the designed structures due to the form of longer conjugated length and more linear backbone.One dimethylamino terminal attached along the skeleton can improve TPA intensity more efficiently than two side amino groups.Therefore,in the second level of design,a new probe 7 is formed by both an acyl unit and a dimethylamino terminal.It exhibits that the TPA cross sections of probe 7 and its zinc complex increase dramatically.Furthermore,the fluorescence quantum yields of the designed probes4 and 7 are calculated in a new way,which makes use of the relation between the computed difference of dipole moment and the measured fluorescence quantum yield.The result shows that our design also improves the fluorescence quantum yield considerably.All in all,the designed probes 4 and 7 not only possess enhanced TPA intensities but also have large differences of emission wavelength upon Zn^(2+) coordination and strong fluorescence intensity,which demonstrates that they are potential ratiometric two-photon fluorescent probes.展开更多
Fluorescent probe is an important tool for investigation of biological events in plant tissues.However,the research on small-molecule based fluorescent probe for plant imaging still stays at the initial stage.In order...Fluorescent probe is an important tool for investigation of biological events in plant tissues.However,the research on small-molecule based fluorescent probe for plant imaging still stays at the initial stage.In order to noninvasively achieve the subcellular information of Arabidopsis thaliana,a two-photon and fluorene based fluorophore with a bi-oligo(ethylene glycol)functional group was synthesized.Under the laser's irradiation at 750 nm,the subcellular structures of Arabidopsis thaliana including stomata and root tips were clearly observed without slicing,which displayed significant superiorities over traditional single-photon excitation microscopy.Subsequently,the above functionalized fluorophore was further modified with a recognition group(dipicolylamine)to form a smart fluorescent probe(LJTP1).As results,LJTP1 not only can sensitively detect Cu^(2+)/S^(2-)with fluorescence“on-off-on”response in vitro and in vivo,but also can achieve noninvasive imaging in Arabidopsis thaliana tissues under two-photon microscopy.We believe this study will open up a new mind for noninvasive imaging in plant tissues.展开更多
The properties of one-photon absorption(OPA),emission and two-photon absorption(TPA)of a bipyridine-based zinc ion probe are investigated employing the density functional theory in combination with response functions....The properties of one-photon absorption(OPA),emission and two-photon absorption(TPA)of a bipyridine-based zinc ion probe are investigated employing the density functional theory in combination with response functions.The responsive mechanism and coordination mode effect are explored.The structural fluctuation is illustrated by molecular dynamics simulation.The calculated OPA and emission wavelengths of the probe are consistent with the experimental data.It is found that the red-shift of OPA wavelength and the enhancement of TPA intensity are induced by the increased intra-molecular charge transfer mechanism upon metal binding.The structural fluctuation could result in the blue-shift of TPA wavelength and the decrease of the TPA cross section.The TPA properties are quite different among the zinc complexes with different coordination modes.The TPA wavelength of the complexes with two ligands is close to that of the probe,which is in agreement with the experimental observation.展开更多
A new reversibly switchable fluorescent protein(RSFP), namely Dreiklang, exhibits prominent feature that the wavelengths for switching and fluorescence are decoupled due to its great different structures between bri...A new reversibly switchable fluorescent protein(RSFP), namely Dreiklang, exhibits prominent feature that the wavelengths for switching and fluorescence are decoupled due to its great different structures between bright and dark states. This feature might also induce some nonlinear optic(NLO) properties changing as switching between two states, which might promote new method of biological science. We employ the QM/MM method to simulate the structures of different states, and study their second harmonic generation(SHG) and two-photon absorption(TPA) properties. And we found different states of Dreiklang have different SHG and TPA responses. The SHG and TPA properties of Dreiklang are correlated to particularly geometrical structures of different states, especially the centrosymmetric or nocentrosymmetric π-stacking structures which are formed by chromophore and beside residue Tyr203, so the SHG and TPA responses could be changed as the light induces switching among different states of Dreiklang. This work would prospectively guide the application of Dreiklang on the NLO technology, and help the development of new RSFP with special NLO function.展开更多
The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with res...The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.展开更多
Fluorescence imaging can be employed in fields of medical treatment,astronomical exploration,and national defense security.Traditional fluorescence imaging often takes the single-photon techniques,which is vulnerable ...Fluorescence imaging can be employed in fields of medical treatment,astronomical exploration,and national defense security.Traditional fluorescence imaging often takes the single-photon techniques,which is vulnerable to background interference and photobleaching.Remedially,two-photon fluorescence imaging can achieve much higher-resolution fluorescence imaging for reducing scattering and deeper depth.Hence,by assembling the tetraphenylethylene backbones with nontoxic and non-noble K^(+)ions,compound 1([(Hdma)K(H_(2)ettc)]_(n),H_(4)ettc=4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-4-carboxylic acid)))with the crystallization-induced emissions exhibited charming fluorescence imaging under two-photon excitation microscopy(TPEM).Besides,luminescent powders based on compound 1 can achieve high-resolution fingerprint recognition,providing secure access control and identification for a novel authentication method.Compared with the commercial fluorescent dyes coumarin-6,the as-synthesized compound 1 showed great solvent stability,indicating its durability against harsh environment.Moreover,compound 1 shows mechanoluminescent properties for the perturbation of weak supramolecular interactions within ordered arrangements of the H_(2)ettc^(2−)ligands.This novel compound has provided an important insight to the development of twophoton fluorescence imaging and advanced external-stimuli responsive materials.展开更多
To overcome the conflict between the long-wavelength excitation and high singlet oxygen quantum yield of photosensitizers,we conjugated a two-photon fluorophore,tetrahydroquinoxaline coumarin(TQ),and an efficient phot...To overcome the conflict between the long-wavelength excitation and high singlet oxygen quantum yield of photosensitizers,we conjugated a two-photon fluorophore,tetrahydroquinoxaline coumarin(TQ),and an efficient photodynamic therapeutic agent,benzo[a]phenothiazinium(NBS-NH_(2)),through a hexamethylene linker to build a two-photon photosensitizer,TQ-NBS.In TQ-NBS,TQ served as an energy donor and NBS-NH_(2) acted as an energy acceptor;and TQ-NBS was a F?rster resonance energy transfer(FRET)cassette with a 92.8%efficiency.The large two-photon absorption cross-section of TQ allowed photosensitizer TQ-NBS to work in a 900 nm two-photon excitation(TPE)mode,which greatly benefited the deep tissue penetration in PDT treatment.Meanwhile,the excellent phototoxicity and near-infrared fluorescence of NBS-NH2was kept in TQ-NBS under a TPE mode via a FRET process.Photosensitizer TQ-NBS exhibited a high phototoxic efficacy in living cells and tumor-bearing mice.展开更多
Fluorescence lifetime imaging can reveal the high-resolution structure of various biophysical and chemical parameters in a microenvironment quantitatively.However,the depth of imaging is generally limited to hundreds ...Fluorescence lifetime imaging can reveal the high-resolution structure of various biophysical and chemical parameters in a microenvironment quantitatively.However,the depth of imaging is generally limited to hundreds of micrometers due to aberration and light scattering in biological tissues.This paper introduces an iterative multi-photon adaptive compensation technique(IMPACT)into a two-photon fluorescence lifetime microscopy system to successfully overcome aberrations and multiple scattering problems in deep tissues.It shows that 400 correction modes can be achieved within 5 min,which was mainly limited by the frame rate of a spatial light modulator.This system was used for high-resolution imaging of mice brain tissue and live zebrafish,further verifying its superior performance in imaging quality and photon accumulation speed.展开更多
The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ...The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.展开更多
Digestive tract tumors acount for 15%and 19.3%of the cancer incidence and deaths,respec-tively.Early detection of digestive tract tumors is crucial to the reduction of global cancer burden.Two-photon excitation fuores...Digestive tract tumors acount for 15%and 19.3%of the cancer incidence and deaths,respec-tively.Early detection of digestive tract tumors is crucial to the reduction of global cancer burden.Two-photon excitation fuorescence lifetime imaging microscopy(TP-FLIM)allows non-invasive,label free,three-dimensional,high-resolution imaging of living tisues with not only histological but also biochemical characterization ability in both qualitative and quantitative way.Benefiting from these advantages,this technology is protmising for clinical diagnosis of digestive tract tumors.In recent years,many efforts have'been made in this field and some remarkable progress has been achieved.In this paper,we overview the recent progress of TP-FLIM-based researches on digestive tract tumor detection.Among them,our latest results on the gastric cancer and esophageal cancer are elaborately depicted.Finally,we outlook and discuss the potential advantages and challenges of TP-FLIM in future clinical applications.展开更多
基金The National Natural Science Foundation of China(No.60678042)the Natural Science Foundation of Jiangsu Province(No.BK2006553)the Pre-Research Project of the National Natural Science Foundation supported by Southeast University(No.9207041399)
文摘Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl) -[ 1, 3, 4 ] oxadiazol-2-yl ] -phenyl }-vinyl ) -carbazole ( 2 ) are synthesized through Wittig reaction and characterized by nuclear magnetic resonance(NMR)and infrared(IR). The two- photon absorption properties of chromophores are investigated. These chromophores exhibit large two-photon absorption crosssections and strong blue two-photon excited fluorescence. The cooperative enhancement of two-photon absorption(TPA) in the multi-branched structures is observed. This enhancement is partly attributed to the electronic coupling between the branches. The electronic push-pull structures in the arm and their cooperative effects help the extended charge transfer for TPA.
基金This work is supported by the National Natural Science Foundation of China(No.20172034)grant for State Key Program of China.
文摘Two new bithiophene derivatives named as 5, 5-bis(p-N,N-dimethylaminostyryl)-2, 2 -bithiophene (BMSBT), and 5, 5-bis(p-N,N-diethylaminostyryl)-2, 2-bithiophene (BESBT) have been synthesized. Both compounds can emit strong single-photon excited fluorescence (SPEF) and two-photon excited fluorescence (TPEF) with the emission peaks around ~560 nm and with the lifetime of ~1ns.
基金supported in part by the National Key R&D Program of China(2017YFA0700402)National Natural Science Foundation of China(61961136005/61935012/62175163/61835009)+1 种基金Shenzhen Key projects(JCYJ20200109105404067)Shenzhen International Cooperation Project(GJHZ 20190822095420249).
文摘Apoptosis is very important for the maintenance of cellular homeostasis and is closely related to the occurrence and treatment of many diseases.Mitochondria in cells play a crucial role in programmed cell death and redox processes.Nicotinamide adenine dinucleotide(NAD(P)H)is the primary producer of energy in mitochondria,changing NAD(P)H can directly reflect the physiological state of mitochondria.Therefore,NAD(P)H can be used to evaluate metabolic response.In this paper,we propose a noninvasive detection method that uses two-photon fluorescence lifetime imaging microscopy(TP-FLIM)to characterize apoptosis by observing the binding kinetics of cellular endogenous NAD(P)H.The result shows that the average fluorescence lifetime of NAD(P)H and the fluorescence lifetime of protein-bound NAD(P)H will be affected by the changing pH,serum content,and oxygen concentration in the cell culture environment,and by the treatment with reagents such as H2O2 and paclitaxel.Taxol(PTX).This noninvasive detection method realized the dynamic detection of cellular endogenous substances and the assessment of apoptosis.
基金supported by the Major Project of Natural Science Research in Universities of Anhui Province(KJ2018ZD037,KJ2018A0333)Key Project of Youth Talents in Universities of Anhui Province(gxyqZD2017067)+5 种基金National Natural Science Foundation of China(21401024)Natural Science Foundation of Anhui Province(1508085MB21)National Students Research Training Program(201810371028)Research Innovation Team of Fuyang Normal University(kytd201710)Horizontal Cooperation Project of Fuyang Municipal Government and Fuyang Normal University(XDHX2016011,XDHX2016004)Anhui University Research Innovation Platform Team Project(201549)
文摘An electron donor-π-bridge-electron acceptor(D-π-A) optical functional organic compound comprising a triphenylamine moiety as the electron donor and pyridine moiety as the electron acceptor was synthesized. The structure of the compound was solved by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic, space group P21, with a = 9.753(5), b = 8.815(5), c = 25.554(5) ?, β = 96.315(5)°, V = 2184(2) ?~3, Z = 2, D_c = 1.136 g/m^3, F(000) = 792, Μr = 746.92, μ = 0.069 mm^(-1), the final R = 0.0658 and wR = 0.1730 for 6790 observed reflections with I > 2(I). Study of nonlinear optical properties shows that the compound exhibits excellent two-photon excited fluorescence with the two-photon absorption cross-section value of 116 GM. The structure-property relationship was researched in detail through X-ray crystallography and quantum chemical calculation. Result of living cell imaging experiment shows its potential in fluorescence microscopy bioimaging.
文摘Efficient Ti-catalyzed reductive coupling methodology was first employed to synthesize the symmetrical bis-donor stilbene, trans-4, 4'-bis[diphenyl amino] stilbene (BDPAS). X-ray diffraction analyses reveal that this new crystal belongs to the triclinic crystal system of centro-symmetric P-1 space group. The DBPAS solution, with the linear transmission at wavelength of greater than or equal to 450 nm, possesses large two-photon absorption cross section as high as 39.4x10(-48) cm(4).s/photon resulting in strong two-photon induced blue fluorescence of 460 nm, pumped by 740 nm laser irradiation.
基金supported by the National Natural Science Foundation of China(No.20172034)the Ph.D.programs Foundation of Ministry of Education of China
文摘Two new compounds involving a thiophene moiety named as 2,5-bis[4-(N,N- diphenyl- amino)styryl]thiophene (BPST) and 2,5-bis[4-(N,N-diethylamino)styryl]thiophene (BEST) have been synthesized. The two-photon absorption cross section of BPST was measured as large as 256 × 10-50 cm4·s/photon, when it was excited by 800 nm femtosecond laser.
文摘Two new D--A type compounds, where electron-donor D is tertiary amino group, electron-acceptor A is 2-benzothiazolyl and ?is two conjugated styryl units, have been synthesized. They are named as trans, trans-2-{4-[4-(N, N-diethylamino)styryl]styryl}-1, 3-benzothiazole and trans, trans-2-{4-[4-(N, N-diphenylamino)styryl]styryl}-1, 3-benzothiazole. Both compounds show strong two-photon excited fluorescence in yellow-orange region when excited by a femtosecond laser at 800 nm.
文摘The synthesis and upconverted fluorescent properties of three novel organic compoundswith the structure: donor/bridge/acceptor are reported. The dyes show strong upconvertedfluorescence.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404048,61205154 and 11375034the Fundamental Research Funds for the Central Universities under Grant Nos 3132015233,3132013104,3132014337,3132015144 and3132015152+1 种基金the State Key Laboratory of Fine Chemicals(KF1409)the Program for Liaoning Excellent Talents in University under Grant No LJQ2014051
文摘The two-photon fluorescence properties and ultrafast responses of a hyperbranched polyyne (hb-DPP-J2) with triphenylamine as the central core, Diketo-Pyrrolo-Pyrrole as the connecting unit and electron acceptor are studied. The polymer has a D-π-A-π-D conjugated structure along the extended polyyne w-bridge systems, and the effective condugated unit repeats itself in the whole hyperbranehed polymer chain. The polymer exhibits a large two-photon absorption cross section and high fluorescence quantum yields. The ultrafast dynamic results give a deep understanding of the excited energy transfer processes under excitation, and reveal a long relaxation lifetime of the intramolecular charge transfer (ICT) state.
基金supported by grants from the National Natural Science Foundation of China,Nos.92148206,82071330(to ZPT)82201745(to HN)the Natural Science Foundation of Hubei Province,China,Nos.2021BCA109(to ZPT)and 2021CFB067(to HN)。
文摘Ischemic stroke is one of the most common causes of mortality and disability worldwide.However,treatment efficacy and the progress of research remain unsatisfactory.As the critical support system and essential components in neurovascular units,glial cells and blood vessels(including the bloodbrain barrier)together maintain an optimal microenvironment for neuronal function.They provide nutrients,regulate neuronal excitability,and prevent harmful substances from entering brain tissue.The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis,supporting neuronal function,and reacting to injuries.However,most studies have focused on postmortem animals,which inevitably lack critical information about the dynamic changes that occur after ischemic stroke.Therefore,a high-precision technique for research in living animals is urgently needed.Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions.Twophoton fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure,information on multicellular component interactions,and provide images of structure and function in the cranial window.This technique shifts the existing research paradigm from static to dynamic,from flat to stereoscopic,and from single-cell function to multicellular intercommunication,thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain.In this review,we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy,highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain’s support systems.We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2020MA078)。
文摘To improve two-photon absorption(TPA)response of a newly synthesized probe,a series of ratiometric two-photon fluorescent Zn^(2+) sensors based on quinoline and DPA moieties have been designed.The one-photon absorption,TPA,and emission properties of the experimental and designed probes before and after coordination with Zn^(2+) are investigated employing the density functional theory in combination with response functions.The design consists of two levels.In the first level of design,five probes are constructed through using several electron acceptors or donors to increase accepting or donating ability of the fluorophores.It shows that all the designed probes have stronger TPA intensities at longer wavelengths with respect to the experimental probe because of the increased intra-molecular charge transfer.Moreover,it is found that the probe 4 built by adding an acyl unit has the largest TPA cross section among the designed structures due to the form of longer conjugated length and more linear backbone.One dimethylamino terminal attached along the skeleton can improve TPA intensity more efficiently than two side amino groups.Therefore,in the second level of design,a new probe 7 is formed by both an acyl unit and a dimethylamino terminal.It exhibits that the TPA cross sections of probe 7 and its zinc complex increase dramatically.Furthermore,the fluorescence quantum yields of the designed probes4 and 7 are calculated in a new way,which makes use of the relation between the computed difference of dipole moment and the measured fluorescence quantum yield.The result shows that our design also improves the fluorescence quantum yield considerably.All in all,the designed probes 4 and 7 not only possess enhanced TPA intensities but also have large differences of emission wavelength upon Zn^(2+) coordination and strong fluorescence intensity,which demonstrates that they are potential ratiometric two-photon fluorescent probes.
基金supported by the National Natural Science Foundation of China(21806048,21801086 and 22071072).
文摘Fluorescent probe is an important tool for investigation of biological events in plant tissues.However,the research on small-molecule based fluorescent probe for plant imaging still stays at the initial stage.In order to noninvasively achieve the subcellular information of Arabidopsis thaliana,a two-photon and fluorene based fluorophore with a bi-oligo(ethylene glycol)functional group was synthesized.Under the laser's irradiation at 750 nm,the subcellular structures of Arabidopsis thaliana including stomata and root tips were clearly observed without slicing,which displayed significant superiorities over traditional single-photon excitation microscopy.Subsequently,the above functionalized fluorophore was further modified with a recognition group(dipicolylamine)to form a smart fluorescent probe(LJTP1).As results,LJTP1 not only can sensitively detect Cu^(2+)/S^(2-)with fluorescence“on-off-on”response in vitro and in vivo,but also can achieve noninvasive imaging in Arabidopsis thaliana tissues under two-photon microscopy.We believe this study will open up a new mind for noninvasive imaging in plant tissues.
基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2014AM026).
文摘The properties of one-photon absorption(OPA),emission and two-photon absorption(TPA)of a bipyridine-based zinc ion probe are investigated employing the density functional theory in combination with response functions.The responsive mechanism and coordination mode effect are explored.The structural fluctuation is illustrated by molecular dynamics simulation.The calculated OPA and emission wavelengths of the probe are consistent with the experimental data.It is found that the red-shift of OPA wavelength and the enhancement of TPA intensity are induced by the increased intra-molecular charge transfer mechanism upon metal binding.The structural fluctuation could result in the blue-shift of TPA wavelength and the decrease of the TPA cross section.The TPA properties are quite different among the zinc complexes with different coordination modes.The TPA wavelength of the complexes with two ligands is close to that of the probe,which is in agreement with the experimental observation.
基金based on work supported by the National Natural Science Foundation of China(No.21703246 and 21403242)Natural Science Foundation of Fujian Province(2014J05021)
文摘A new reversibly switchable fluorescent protein(RSFP), namely Dreiklang, exhibits prominent feature that the wavelengths for switching and fluorescence are decoupled due to its great different structures between bright and dark states. This feature might also induce some nonlinear optic(NLO) properties changing as switching between two states, which might promote new method of biological science. We employ the QM/MM method to simulate the structures of different states, and study their second harmonic generation(SHG) and two-photon absorption(TPA) properties. And we found different states of Dreiklang have different SHG and TPA responses. The SHG and TPA properties of Dreiklang are correlated to particularly geometrical structures of different states, especially the centrosymmetric or nocentrosymmetric π-stacking structures which are formed by chromophore and beside residue Tyr203, so the SHG and TPA responses could be changed as the light induces switching among different states of Dreiklang. This work would prospectively guide the application of Dreiklang on the NLO technology, and help the development of new RSFP with special NLO function.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014AM026)the National Natural Science Foundation of China(Grant Nos.11374195 and 11404193)the Taishan Scholar Project of Shandong Province,China
文摘The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.
基金supported by the National Natural Science Foundation of China(Nos.22205237,22271283,21971240,and 21827813)the National Key Research and Development Program of China(No.2017YFA0206802)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20210039).
文摘Fluorescence imaging can be employed in fields of medical treatment,astronomical exploration,and national defense security.Traditional fluorescence imaging often takes the single-photon techniques,which is vulnerable to background interference and photobleaching.Remedially,two-photon fluorescence imaging can achieve much higher-resolution fluorescence imaging for reducing scattering and deeper depth.Hence,by assembling the tetraphenylethylene backbones with nontoxic and non-noble K^(+)ions,compound 1([(Hdma)K(H_(2)ettc)]_(n),H_(4)ettc=4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-4-carboxylic acid)))with the crystallization-induced emissions exhibited charming fluorescence imaging under two-photon excitation microscopy(TPEM).Besides,luminescent powders based on compound 1 can achieve high-resolution fingerprint recognition,providing secure access control and identification for a novel authentication method.Compared with the commercial fluorescent dyes coumarin-6,the as-synthesized compound 1 showed great solvent stability,indicating its durability against harsh environment.Moreover,compound 1 shows mechanoluminescent properties for the perturbation of weak supramolecular interactions within ordered arrangements of the H_(2)ettc^(2−)ligands.This novel compound has provided an important insight to the development of twophoton fluorescence imaging and advanced external-stimuli responsive materials.
基金supported by National Key Research and Development Program of China(No.2022YFA1207600)National Natural Science Foundation of China(Nos.22178395,62175262 and 62005294)。
文摘To overcome the conflict between the long-wavelength excitation and high singlet oxygen quantum yield of photosensitizers,we conjugated a two-photon fluorophore,tetrahydroquinoxaline coumarin(TQ),and an efficient photodynamic therapeutic agent,benzo[a]phenothiazinium(NBS-NH_(2)),through a hexamethylene linker to build a two-photon photosensitizer,TQ-NBS.In TQ-NBS,TQ served as an energy donor and NBS-NH_(2) acted as an energy acceptor;and TQ-NBS was a F?rster resonance energy transfer(FRET)cassette with a 92.8%efficiency.The large two-photon absorption cross-section of TQ allowed photosensitizer TQ-NBS to work in a 900 nm two-photon excitation(TPE)mode,which greatly benefited the deep tissue penetration in PDT treatment.Meanwhile,the excellent phototoxicity and near-infrared fluorescence of NBS-NH2was kept in TQ-NBS under a TPE mode via a FRET process.Photosensitizer TQ-NBS exhibited a high phototoxic efficacy in living cells and tumor-bearing mice.
基金supported by the National Key Research and Development Program of China(No.2021YFF0502900)the National Natural Science Foundation of China(Nos.62175163,62225505,61935012,61835009,62127819,and 62205220)+2 种基金the Shenzhen Key Projects(No.JCYJ20200109105404067)the Shenzhen Talent Innovation Project(No.RCJC20210706091949022)the Shenzhen Science and Technology Planning Project(No.ZDSYS20210623092006020)。
文摘Fluorescence lifetime imaging can reveal the high-resolution structure of various biophysical and chemical parameters in a microenvironment quantitatively.However,the depth of imaging is generally limited to hundreds of micrometers due to aberration and light scattering in biological tissues.This paper introduces an iterative multi-photon adaptive compensation technique(IMPACT)into a two-photon fluorescence lifetime microscopy system to successfully overcome aberrations and multiple scattering problems in deep tissues.It shows that 400 correction modes can be achieved within 5 min,which was mainly limited by the frame rate of a spatial light modulator.This system was used for high-resolution imaging of mice brain tissue and live zebrafish,further verifying its superior performance in imaging quality and photon accumulation speed.
文摘The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.
基金supports from the National Key Research and Development Program of China(2017YFC0110200)Program 973(2015CB755502)+4 种基金the National Natural Science Foundation of China(NSFC)(81571724,81701744,81822023)the Natural Science Foundation of Guangdong Province(2014A030312006,2017A 030310308)the Scientific Instrument Innovation Team of Chinese Academy of Sciences(GJJSTD 20180002)the Shenzhen Science and Technology Program(JCYJ20170818164343304,JCYJ20170818155006471,JCYJ20160608214524052,JCYJ20180507182432303)the SIAT Innovation Program for Excellent Young Researchers(201821).
文摘Digestive tract tumors acount for 15%and 19.3%of the cancer incidence and deaths,respec-tively.Early detection of digestive tract tumors is crucial to the reduction of global cancer burden.Two-photon excitation fuorescence lifetime imaging microscopy(TP-FLIM)allows non-invasive,label free,three-dimensional,high-resolution imaging of living tisues with not only histological but also biochemical characterization ability in both qualitative and quantitative way.Benefiting from these advantages,this technology is protmising for clinical diagnosis of digestive tract tumors.In recent years,many efforts have'been made in this field and some remarkable progress has been achieved.In this paper,we overview the recent progress of TP-FLIM-based researches on digestive tract tumor detection.Among them,our latest results on the gastric cancer and esophageal cancer are elaborately depicted.Finally,we outlook and discuss the potential advantages and challenges of TP-FLIM in future clinical applications.