In this note, the ideas employed in [1] to treat the problem of an ellipsoid intersected by a plane are applied to the analogous problem of a hyperboloid being intersected by a plane. The curves of intersection result...In this note, the ideas employed in [1] to treat the problem of an ellipsoid intersected by a plane are applied to the analogous problem of a hyperboloid being intersected by a plane. The curves of intersection resulting in this case are not only ellipses but rather all types of conics: ellipses, hyperbolas and parabolas. In text books of mathematics usually only cases are treated, where the planes of intersection are parallel to the coordinate planes. Here the general case is illustrated with intersecting planes which are not necessarily parallel to the coordinate planes.展开更多
文摘In this note, the ideas employed in [1] to treat the problem of an ellipsoid intersected by a plane are applied to the analogous problem of a hyperboloid being intersected by a plane. The curves of intersection resulting in this case are not only ellipses but rather all types of conics: ellipses, hyperbolas and parabolas. In text books of mathematics usually only cases are treated, where the planes of intersection are parallel to the coordinate planes. Here the general case is illustrated with intersecting planes which are not necessarily parallel to the coordinate planes.