The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- reg...The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- regular general rings are provided. It is shown that I is strongly π-regular if and only if, for each x ∈I, x^n =x^n+1y = zx^n+1 for n ≥ 1 and y, z ∈ I if and only if every element of I is strongly π-regular. It is also proved that every upper triangular matrix general ring over a strongly π-regular general ring is strongly π-regular and the trivial extension of the strongly π-regular general ring is strongly clean.展开更多
A general ring means an associative ring with or without identity.An idempotent e in a general ring I is called left (right) semicentral if for every x ∈ I,xe=exe (ex=exe).And I is called semiabelian if every idempot...A general ring means an associative ring with or without identity.An idempotent e in a general ring I is called left (right) semicentral if for every x ∈ I,xe=exe (ex=exe).And I is called semiabelian if every idempotent in I is left or right semicentral.It is proved that a semiabelian general ring I is π-regular if and only if the set N (I) of nilpotent elements in I is an ideal of I and I /N (I) is regular.It follows that if I is a semiabelian general ring and K is an ideal of I,then I is π-regular if and only if both K and I /K are π-regular.Based on this we prove that every semiabelian GVNL-ring is an SGVNL-ring.These generalize several known results on the relevant subject.Furthermore we give a characterization of a semiabelian GVNL-ring.展开更多
Let R be a ring and I an ideal of R. A ring R is called I-semi-π--regular if R/I is π-regular and idempotents of R can be strongly lifted modulo I. Characterizations of I-semi-π-regular rings are given and relation...Let R be a ring and I an ideal of R. A ring R is called I-semi-π--regular if R/I is π-regular and idempotents of R can be strongly lifted modulo I. Characterizations of I-semi-π-regular rings are given and relations between semi-π-regular rings and semiregular rings are explored.展开更多
In this note, a counterexample is given to show that a noncommutative VNL-ring need not be an SVNL-ring, answering an open question of Chen and Tong (Glasgow Math. J., 48(1)(2006)) negatively. Moreover, some new...In this note, a counterexample is given to show that a noncommutative VNL-ring need not be an SVNL-ring, answering an open question of Chen and Tong (Glasgow Math. J., 48(1)(2006)) negatively. Moreover, some new results about VNL-rings and GVNL-ringsare also given.展开更多
We study when exchange rings are von Neumann regular. An exchange ring R with primitive factors Artinian is von Neumann regular, if the Jacobson radical of any indecomposable homomorphic image of R is T-nilpotent, and...We study when exchange rings are von Neumann regular. An exchange ring R with primitive factors Artinian is von Neumann regular, if the Jacobson radical of any indecomposable homomorphic image of R is T-nilpotent, and if any indecomposable homomorphic image of R is semiprime. Every indecomposable semiprimitive factor ring of R is regular, if R is an exchange ring such that every left primitive factor ring of R is a ring of index at most n and if R has nil-property.展开更多
A ring R is π-regular if for every a in R, there is a positive integer n such that a^n R is generated by an idempotent. In this paper, we introduce the notion of π-*-regular rings, which is the *-version of π-reg...A ring R is π-regular if for every a in R, there is a positive integer n such that a^n R is generated by an idempotent. In this paper, we introduce the notion of π-*-regular rings, which is the *-version of π-regular rings. We prove various properties of π-*-regular rings, and establish many equivalent characterizations of abelian π-*-regular rings.展开更多
In this paper, the concept of right generalized semi-π-regular rings is defined. We prove that these rings are non-trival generalizations of both right GP-injective rings and semi- π-regular rings. Some properties o...In this paper, the concept of right generalized semi-π-regular rings is defined. We prove that these rings are non-trival generalizations of both right GP-injective rings and semi- π-regular rings. Some properties of these rings are studied and some results about generalized semiregular rings and GP-injective rings are extended.展开更多
Let R be an exchange ring with primitive factors artinian. We prove that there exists a u∈U(R) such that 1R ± u ∈ U(R), if and only if for any a ∈ R, there exists a u ∈ U(R) such that a ± u∈ U(R...Let R be an exchange ring with primitive factors artinian. We prove that there exists a u∈U(R) such that 1R ± u ∈ U(R), if and only if for any a ∈ R, there exists a u ∈ U(R) such that a ± u∈ U(R). Phrthermore, we prove that, for any A ∈ Mn(R)(n ≥ 2), there exists a U ∈ GLn(R) such that A ± U ∈ GLn(R).展开更多
基金The Foundation for Excellent Doctoral Dissertationof Southeast University (NoYBJJ0507)the National Natural ScienceFoundation of China (No10571026)the Natural Science Foundation ofJiangsu Province (NoBK2005207)
文摘The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- regular general rings are provided. It is shown that I is strongly π-regular if and only if, for each x ∈I, x^n =x^n+1y = zx^n+1 for n ≥ 1 and y, z ∈ I if and only if every element of I is strongly π-regular. It is also proved that every upper triangular matrix general ring over a strongly π-regular general ring is strongly π-regular and the trivial extension of the strongly π-regular general ring is strongly clean.
基金The NSF (Y2008A04) of Shandong Province of China
文摘A general ring means an associative ring with or without identity.An idempotent e in a general ring I is called left (right) semicentral if for every x ∈ I,xe=exe (ex=exe).And I is called semiabelian if every idempotent in I is left or right semicentral.It is proved that a semiabelian general ring I is π-regular if and only if the set N (I) of nilpotent elements in I is an ideal of I and I /N (I) is regular.It follows that if I is a semiabelian general ring and K is an ideal of I,then I is π-regular if and only if both K and I /K are π-regular.Based on this we prove that every semiabelian GVNL-ring is an SGVNL-ring.These generalize several known results on the relevant subject.Furthermore we give a characterization of a semiabelian GVNL-ring.
基金Foundation item:This work is partially supported by the NNSF(10171011)of Chinathe NNSF(10571026)of Chinathe Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutes of MOE,P.R.C.
文摘Let R be a ring and I an ideal of R. A ring R is called I-semi-π--regular if R/I is π-regular and idempotents of R can be strongly lifted modulo I. Characterizations of I-semi-π-regular rings are given and relations between semi-π-regular rings and semiregular rings are explored.
文摘In this note, a counterexample is given to show that a noncommutative VNL-ring need not be an SVNL-ring, answering an open question of Chen and Tong (Glasgow Math. J., 48(1)(2006)) negatively. Moreover, some new results about VNL-rings and GVNL-ringsare also given.
基金supported by the guidance project of scientific research plan of Educational Adminstration of Hubei Province,China(B2016162)the plan of science and technology innovation team of excellent young and middle-age of Hubei province(T201731)
文摘We study when exchange rings are von Neumann regular. An exchange ring R with primitive factors Artinian is von Neumann regular, if the Jacobson radical of any indecomposable homomorphic image of R is T-nilpotent, and if any indecomposable homomorphic image of R is semiprime. Every indecomposable semiprimitive factor ring of R is regular, if R is an exchange ring such that every left primitive factor ring of R is a ring of index at most n and if R has nil-property.
基金The authors are highly grateful to the referee for many valuable comments. This research was supported by the National Natural Science Foundation of China (No. 11401009), Anhui Provincial Natural Science Foundation (No. 1408085QA01) and Key Natural Science Foundation of Anhui Educational Committee (No. KJ2014A082).
文摘A ring R is π-regular if for every a in R, there is a positive integer n such that a^n R is generated by an idempotent. In this paper, we introduce the notion of π-*-regular rings, which is the *-version of π-regular rings. We prove various properties of π-*-regular rings, and establish many equivalent characterizations of abelian π-*-regular rings.
文摘In this paper, the concept of right generalized semi-π-regular rings is defined. We prove that these rings are non-trival generalizations of both right GP-injective rings and semi- π-regular rings. Some properties of these rings are studied and some results about generalized semiregular rings and GP-injective rings are extended.
基金Supported by Natural Science Foundation of Hunan Province(04JJ40003)
文摘Let R be an exchange ring with primitive factors artinian. We prove that there exists a u∈U(R) such that 1R ± u ∈ U(R), if and only if for any a ∈ R, there exists a u ∈ U(R) such that a ± u∈ U(R). Phrthermore, we prove that, for any A ∈ Mn(R)(n ≥ 2), there exists a U ∈ GLn(R) such that A ± U ∈ GLn(R).