期刊文献+
共找到5,146篇文章
< 1 2 250 >
每页显示 20 50 100
A rapid one-step electrodeposition process for fabrication of superhydrobic surfaces on anode and cathode 被引量:3
1
作者 郝丽梅 闫小乐 +2 位作者 解忧 张涛 陈志 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1576-1583,共8页
This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A r... This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface. 展开更多
关键词 one-step electrodeposition process SUPERHYDROPHOBICITY contact angle AQUEOUS ANODE CATHODE
下载PDF
One-step electrodeposition to fabricate robust superhydrophobic silver/graphene coatings with excellent stability 被引量:2
2
作者 De-xin CHEN Ye-qing HE +2 位作者 Qi-wei WANG Wei LI Zhi-xin KANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3321-3333,共13页
A facile method was proposed to prepare stretchable silver-based composite coatings with excellent conductivity and stability for flexible electronics.Silver coating was firstly deposited on thermoplastic polyurethane... A facile method was proposed to prepare stretchable silver-based composite coatings with excellent conductivity and stability for flexible electronics.Silver coating was firstly deposited on thermoplastic polyurethane(TPU)elastomer rubber surface via two-component spraying technique,then the superhydrophobic surface was obtained by one-step electrodeposition of cerium compounds(CeM)and graphene nanosheets(GNS)to produce Ag/CeM/GNS composite coatings.The obtained Ag/CeM/GNS composite coatings maintained high conductivity after experiencing bending cycles and stretching cycles.Furthermore,the as-prepared Ag/CeM/GNS composite coatings showed excellent self-cleaning and anti-fouling properties,and the corrosion resistance has improved significantly compared to the original Ag coating.In addition,the Ag/CeM/GNS composite coatings could drive the circuit normally in the states of tensile,bending and twisting deformation,showing excellent mechanical stability and applicability.As a result,it is believed that the prepared Ag/CeM/GNS composite coatings with excellent conductivity and stability have promising applications for flexible electronics in harsh conditions. 展开更多
关键词 silver/graphene coating SUPERHYDROPHOBICITY one-step electrodeposition STABILITY
下载PDF
Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition 被引量:1
3
作者 Haonan Ren Lingxiao Yu +3 位作者 Leping Yang Zheng-Hong Huang Feiyu Kang Ruitao Lv 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期194-201,共8页
Developing bifunctional electrocatalysts with both high catalytic activity and high stability is crucial for efficient water splitting in alkaline media.Herein,a Fe-incorporated dual-metal selenide on nickel foam(Co_(... Developing bifunctional electrocatalysts with both high catalytic activity and high stability is crucial for efficient water splitting in alkaline media.Herein,a Fe-incorporated dual-metal selenide on nickel foam(Co_(0.9)Fe_(0.1)-Se/NF) is synthesized via a facile one-step electrodeposition method.As-synthesized materials could serve as self-supported bifunctional electrocatalysts with excellent catalytic activity towards oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) in alkaline media.Experimental results show that delivering a 10 mA cm^(-2) water splitting current density only requires a cell voltage of 1.55 V.In addition,a very stable performance could be kept for about 36 hours,indicating their excellent working stability.Moreover,by means of phase analysis,we have identified that the evolution of the synthesized Co_(0.9)Fe_(0.1)-Se/NF experiences two entirely different processes in HER and OER,which hydroxide and oxyhydroxide are regarded as the real active sites,respectively.This work may pave the way to further understanding the relationships between the reactivity and stability of chalcogenide-based electrocatalysts and facilitating the rational design of efficient electrocatalysts for future renewable energy system applications. 展开更多
关键词 electrodeposition Overall water splitting Cobalt iron selenide Structural evolution Active sites
下载PDF
Using Electrodeposition of Carboxylated Chitosan for Green Preparation of Copper Nanoclusters and Nanocomposite Films
4
作者 ZHANG Xiaoli LI Tingxue +4 位作者 WANG Qinghua YANG Yan ZHANG Chenyu LIU Yaning WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1348-1357,共10页
On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient ... On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices. 展开更多
关键词 nanocomposite films copper nanoclusters electrodeposition carboxylated chitosan POLYSACCHARIDES
下载PDF
Reshaping Li–Mg hybrid batteries:Epitaxial electrodeposition and spatial confinement on MgMOF substrates via the lattice‐matching strategy
5
作者 Yongqin Wang Fulin Cheng +2 位作者 Jiawen Ji Chenyang Cai Yu Fu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期248-261,共14页
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem... The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries. 展开更多
关键词 epitaxial electrodeposition lattice‐matching strategy Li-Mg hybrid batteries MOF substrate spatial confinement
下载PDF
Constructing robust NiFe LDHs-NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting:one-step electrodeposition and surface reconstruction 被引量:3
6
作者 Yi-Fei Chen Jia-Hong Li +6 位作者 Tian-Tian Liu Si-Hang You Peng Liu Fu-Jin Li Meng-Qi Gao Shu-Guang Chen Fei-Fei Zhang 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2272-2283,共12页
NiFe layered double hydroxides(NiFe LDHs)have been intensively developed for the oxygen evolution reaction(OER)in alkaline media;however,their unsatisfactory hydrogen evolution reaction(HER)performance limits their pr... NiFe layered double hydroxides(NiFe LDHs)have been intensively developed for the oxygen evolution reaction(OER)in alkaline media;however,their unsatisfactory hydrogen evolution reaction(HER)performance limits their practical application in overall water splitting.Herein,a simple and efficient one-step electrodeposition method is used to accomplish in situ growth of NiFe LDHsNiFe alloy gradient hybrid coatings on a carbon cloth(CC).Within the binder-free electrode,NiFe LDHs nanosheets with a low-crystalline nature exhibit highly active bifunctional OER/HER activities,and the NiFe alloy acts as a stable electron highway and strong skeleton bridge between NiFe LDHs and the CC.When the electrodes are simultaneously employed as the cathode and anode for overall water splitting,they require low cell potentials of 1.441 V at10 mA·cm^(-2)and 1.703 V at 100 mA·cm^(-2),respectively,and they demonstrate outstanding stability at a current density greater than 100 mA·cm^(-2)for more than 100 h.This is one of the best bifunctional OER and HER catalysts for overall water splitting.Both lattice defects and surface reconstructions crucially contribute to the bifunctional OER/HER activities of NiFe LDHs.This simple and scalable synthesis approach presents an intriguing paradigm for industrial production,and the fabricated electrode has potential application in high-current-density water splitting. 展开更多
关键词 BIFUNCTIONAL electrodeposition Gradient hybrid NiFe layered double hydroxides(NiFe LDHs) Overall water splitting
原文传递
Electrodeposition of chitosan/graphene oxide conduit to enhance peripheral nerve regeneration 被引量:3
7
作者 Ya-Nan Zhao Ping Wu +6 位作者 Zi-Yuan Zhao Fei-Xiang Chen Ao Xiao Zhi-Yi Yue Xin-Wei Han Yong Zheng Yun Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期207-212,共6页
Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of ch... Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of chitosan/graphene oxide(GO)films with concentrations of GO varying from 0-1 wt%(collectively referred to as CHGF-n)were prepared by an electrodeposition technique.The effects of CHGF-n on proliferation and adhesion abilities of Schwann cells were evaluated.The results showed that Schwann cells exhibited elongated spindle shapes and upregulated expression of nerve regeneration-related factors such as Krox20(a key myelination factor),Zeb2(essential for Schwann cell differentiation,myelination,and nerve repair),and transforming growth factorβ(a cytokine with regenerative functions).In addition,a nerve guidance conduit with a GO content of 0.25%(CHGFC-0.25)was implanted to repair a 10-mm sciatic nerve defect in rats.The results indicated improvements in sciatic functional index,electrophysiology,and sciatic nerve and gastrocnemius muscle histology compared with the CHGFC-0 group,and similar outcomes to the autograft group.In conclusion,we provide a candidate method for the repair of peripheral nerve defects using free-standing chitosan/GO nerve conduits produced by electrodeposition. 展开更多
关键词 CHITOSAN electrodeposition FREE-STANDING graphene oxide nerve conduit nerve factors Schwann cells tissue engineerin
下载PDF
Inverse-opal structured TiO_(2) regulating electrodeposition behavior to enable stable lithium metal electrodes 被引量:1
8
作者 Xuewen Wu Shaolun Cui +3 位作者 Minfei Fei Sheng Liu Xueping Gao Guoran Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1664-1672,共9页
Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrite... Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrites safety problems. The fundamental solution to the problems is to interfere electrodeposition process of lithium metal so that it can be carried out reversibly and stably. In this work, an inverse-opal structured TiO2membrane with a thickness of only ~1 μm is designed to regulate the electrodeposition behavior of lithium metal, in which the ordered channels homogenize mass transfer process, the anatase TiO_(2)walls of the ion channels reduce desolvation barrier of solvated lithium-ions, and the spherical cavities with a diameter of ~300 nm confine migration of the adsorbed lithium atoms during electrocrystallization to diminish overpotential of lithium. These systematic effects cover and essentially change the whole process of electrodeposition of lithium metal and eliminate the possibility of lithium dendrite formation. The as-obtained lithium metal electrode delivers a Coulombic efficiency of 99.86% in the 100th cycle, and maintains a low deposition overpotential of 0.01 V for 800 h. 展开更多
关键词 Lithium metal anode Inverse-opal structure TiO2 electrodeposition Lithium-sulfur battery
下载PDF
Three-dimensional structural Cu^(6)Sn_(5)/carbon nanotubes alloy thin-film electrodes fabricated by in situ electrodeposition from the leaching solution of waste-printed circuit boards 被引量:1
9
作者 Shuqing Nie Yu Xin +4 位作者 Qiuyun Wang Chengjin Liu Chang Miao Limin Yu Wei Xiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1171-1180,共10页
Tin-based materials are very attractive anodes because of their high theoretical capacity,but their rapid capacity fading from volume expansions limits their practical applications during alloying and dealloying proce... Tin-based materials are very attractive anodes because of their high theoretical capacity,but their rapid capacity fading from volume expansions limits their practical applications during alloying and dealloying processes.Herein,the improved binder-free tin-copper intermetallic/carbon nanotubes(Cu6Sn5/CNTs)alloy thin-film electrodes are directly fabricated through efficient in situ electrodeposition from the leaching solution of treated waste-printed circuit boards(WPCBs).The characterization results show that the easily agglomerated Cu6Sn5 alloy nanoparticles are uniformly dispersed across the three-dimensional network when the CNTs concentration in the electrodeposition solution is maintained at 0.2 g·L−1.Moreover,the optimal Cu6Sn5/CNTs-0.2 alloy thin-film electrode can not only provide a decent discharge specific capacity of 458.35 mAh·g^(−1)after 50 cycles at 100 mA·g^(−1)within capacity retention of 82.58%but also deliver a relatively high reversible specific capacity of 518.24,445.52,418.18,345.33,and 278.05 mAh·g^(−1)at step-increased current density of 0.1,0.2,0.5,1.0,and 2.0 A·g^(−1),respectively.Therefore,the preparation process of the Cu6Sn5/CNTs-0.2 alloy thin-film electrode with improved electrochemical performance may provide a cost-effective strategy for the resource utilization of WPCBs to fabricate anode materials for lithium-ion batteries. 展开更多
关键词 tin-copper intermetallic in situ electrodeposition carbon nanotubes anode material lithium-ion battery
下载PDF
Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition 被引量:5
10
作者 Zheng-Zheng Yin Zhao-Qi Zhang +2 位作者 Xiu-Juan Tian Zhen-Lin Wang Rong-Chang Zeng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第1期25-38,共14页
To enhance durability and adhesion of superhydrophobic surface,an integrated superhydrophobic calcium myristate(Ca[CH3(CH2)12COO]2)coating with excellent corrosion resistance was fabricated on AZ31 magnesium(Mg)alloy ... To enhance durability and adhesion of superhydrophobic surface,an integrated superhydrophobic calcium myristate(Ca[CH3(CH2)12COO]2)coating with excellent corrosion resistance was fabricated on AZ31 magnesium(Mg)alloy via one-step electrodeposition process.Field-emission scanning electron microscopy,Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy as well as X-ray diff raction were employed to investigate the surface characteristics(morphology,composition and structure)of the coatings.Hydrophobicity of the coating was evaluated by means of contact and sliding angles.Additionally,potentiodynamic polarization,electrochemical impedance spectroscopy and hydrogen evolution tests were conducted to characterize the corrosion resistance.Results indicated that the coating exhibited super-hydrophobicity with large static water contact angle(CA)and small sliding angle of 155.2°±1.5°and 6.0°±0.5°,respectively,owing to spherical rough structure and low surface energy(7.01 mJ m^(-2)).The average hydrogen evolution rate(HERa)and corrosion current density(icorr)of the coated sample were 5.3μL cm^(-2)h^(-1) and 5.60×10^(-9)A cm^(-2),about one and four orders of magnitude lower than that of AZ31 substrate,respectively,implying the excellent corrosion resistance.The CA of the coating remained 155.6°±0.9°after soaking for 13 days,showing the super-hydrophobicity and stability of the coating.Simultaneously,the large critical load(5004 mN)for the coating designated the outstanding adhesion to the substrate by nano-scratch test. 展开更多
关键词 Magnesium alloy electrodeposition DURABILITY SUPER-HYDROPHOBICITY Adhesion Corrosion resistance
原文传递
Effect of Electrodeposition Methods of Cuprous Oxide on Antibacterial Properties of Concrete
11
作者 徐怡 XU Ning +5 位作者 GUO Mingzhi LUO Jie LI Yi 储洪强 ZENG Youxu JIANG Linhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期823-833,共11页
Three types of electrodeposition,DC electrodeposition,low-frequency pulsed electrodeposition and high-frequency pulsed electrodeposition,were used to deposit cuprous oxide on the concrete surface to improve the antiba... Three types of electrodeposition,DC electrodeposition,low-frequency pulsed electrodeposition and high-frequency pulsed electrodeposition,were used to deposit cuprous oxide on the concrete surface to improve the antibacterial properties of concrete.The effects of pulse deposition frequency on the antibacterial property of concrete were studied using sulfate-reducing bacteria(SRB)and Escherichia coli(E.coli)as model bacteria.The bacterial concentration and the antibacterial rate were measured to evaluate the antibacterial performance of concrete.The effects of different deposition methods on the elemental content of copper and the amount of copper ions exuded were studied.XRD and SEM were used to analyze the microstructure of the deposited layers.The experimental results show that the concrete treated by electrodeposition exhibited good antibacterial properties against SRB and E.coli.The antibacterial effect of cuprous oxide deposited on concrete by pulse method was better than that by direct current(DC)method.The antibacterial rate of concrete was positively correlated with the exudation rate of copper ion.As the pulse frequency increased,the deposits content on the surface was increased with an accompanying improvement in the antibacterial property.Besides,the pulsed current had an indiscernible effect on the composition of the sediments,which were all mainly composed of Cu_(2)O,but the morphology of the Cu_(2)O differed greatly.Cubic octahedral cuprous oxide had better antibacterial properties with the highest copper ion leaching rate compared with cubic and spherical cuprous oxide. 展开更多
关键词 cuprous oxide electrodeposition mode microbial corrosion antibacterial properties
下载PDF
One-step electrodeposition fabrication of Ni_3S_2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors 被引量:5
12
作者 Jiasheng Xu Yudong Sun +3 位作者 Mingjun Lu Lin Wang Jie Zhang Xiaoyang Liu 《Science China Materials》 SCIE EI CSCD 2019年第5期699-710,共12页
Ni3S2 nanosheet(NS) arrays on Ni foam were fabricated by a simple one-step electrodeposition strategy, and used as a kind of electrode material for asymmetric supercapacitors. The Ni3S2 NS arrays are interconnected, w... Ni3S2 nanosheet(NS) arrays on Ni foam were fabricated by a simple one-step electrodeposition strategy, and used as a kind of electrode material for asymmetric supercapacitors. The Ni3S2 NS arrays are interconnected, which can be regarded as bridges between these individual nanoparticle units. The electrochemical performances were evaluated by cyclic voltammetry and chronopotentiometry techniques in a three-electrode system. The Ni3S2 NS arrays display a specific capacitance of 773.6 F g^-1 at 1 A g^-1, and excellent rate property of 84.3% at 10 A g^-1. The performance of the Ni3S2 NS arrays was further investigated in an asymmetric supercapacitor for potential practical application. The asymmetric supercapacitor using the Ni3S2 electrode and reduced graphene oxide electrode as positive and negative electrodes, respectively, exhibits an energy density of 41.2 W h kg^-1 at 1.6 kW kg^-1. When up to 16 kW kg^-1, it holds 25.3 W h kg^-1.These excellent electrochemical performances are attributed to the improved electronic conductivity and rich redox reaction sites from Ni3S2 NS arrays. Our results indicate that the Ni3S2 NS arrays have great potential for supercapacitors. 展开更多
关键词 nickel subsulfide electrodeposition nanosheet arrays asymmetric supercapac让ors
原文传递
One-step electrodeposition synthesis of bisphosphonate loaded magnesium implant:A strategy to modulate drug release for osteoporotic fracture healing 被引量:1
13
作者 Peng Wan Weidan Wang +2 位作者 Lizhen Zheng Ling Qin Ke Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第19期92-99,共8页
Osteoporotic fracture with increase of aging population became an urgent orthopedic problem.Bisphosphonates were widely recommended as effective clinical treatment drugs.Combination of biodegradable Mg-based implants ... Osteoporotic fracture with increase of aging population became an urgent orthopedic problem.Bisphosphonates were widely recommended as effective clinical treatment drugs.Combination of biodegradable Mg-based implants and merits of bisphosphonates was suggested for osteoporotic fracture healing.Considering the mild and sustained drug release,a novel one-step electrodeposition synthesis of drug loaded coating was proposed in this study.In comparison to conventional soaking method,encapsulated zoledronate coating by one-step electrodeposition method could modulate drug release in first diffusion-controlled and later degradation-controlled manner.The in vitro cell response to zoledronate loaded coating showed enhanced proliferation and osteogenic differentiation of osteoblasts and no significant inhibition on osteoclasts,which could improve bone-forming and decrease bone resorption due to osteoporosis. 展开更多
关键词 BISPHOSPHONATE MAGNESIUM Coating electrodeposition OSTEOPOROSIS
原文传递
One-step quantum dialogue
14
作者 朱鹏辉 钟伟 +3 位作者 杜明明 李喜云 周澜 盛宇波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期95-104,共10页
Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we pr... Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we propose a one-step QD protocol based on the hyperentanglement.With the help of the non-local hyperentanglement-assisted Bell state measurement(BSM),the photons only need to transmit in the quantum channel once.We prove that our one-step QD protocol is secure in theory and numerically simulate its secret message capacity under practical experimental condition.Compared with previous QD protocols,the one-step QD protocol can effectively simplify the experiment operations and reduce the message loss caused by the photon transmission loss.Meanwhile,the non-local hyperentanglement-assisted BSM has a success probability of 100%and is feasible with linear optical elements.Moreover,combined with the hyperentanglement heralded amplification and purification,our protocol is possible to realize long-distance one-step QD. 展开更多
关键词 one-step quantum dialogue hyperentanglement hyperentanglement distribution non-local Bell-state measurement
下载PDF
Effect of the Retarder on Initial Hydration and Mechanical Properties of the"one-step"Alkaliactivated Composite Cementitious Materials
15
作者 DING Rui HE Yue +3 位作者 LI Xingchen LI Han TIAN Hao WANG Hongen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1199-1213,共15页
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a... This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM. 展开更多
关键词 "one-step"alkali-activated composite cementitious materials solid activator hydration mechanism RETARDER retarding mechanism
下载PDF
Three-dimensional visualization technology for guiding one-step percutaneous transhepatic cholangioscopic lithotripsy for the treatment of complex hepatolithiasis
16
作者 Yong-Qing Ye Ya-Wen Cao +6 位作者 Rong-Qi Li En-Ze Li Lei Yan Zhao-Wei Ding Jin-Ming Fan Ping Wang Yi-Xiang Wu 《World Journal of Gastroenterology》 SCIE CAS 2024年第28期3393-3402,共10页
BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional mul... BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery. 展开更多
关键词 HEPATOLITHIASIS one-step percutaneous transhepatic cholangioscopic lithotripsy Biliary disease Three-dimensional visualization Clinical efficacy
下载PDF
Study of the reaction mechanism for preparing powdered activated coke with SO_(2)adsorption capability via one-step rapid activation method under flue gas atmosphere
17
作者 Binxuan Zhou Jingcai Chang +5 位作者 Jun Li Jinglan Hong Tao Wang Liqiang Zhang Ping Zhou Chunyuan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期158-168,共11页
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m... In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation. 展开更多
关键词 Reaction mechanism Powdered activated coke preparation SO_(2)adsorption one-step rapid activation Flue gas atmosphere
下载PDF
Electrodeposition of Al on AZ31 magnesium alloy in TMPAC-AlCl_3 ionic liquids 被引量:6
18
作者 刘奎仁 柳泉 +1 位作者 韩庆 涂赣峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2104-2110,共7页
Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammo... Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity. 展开更多
关键词 magnesium alloy electrodeposition ionic liquids ALUMINUM CORROSION
下载PDF
Influence of sodium silicate on manganese electrodeposition in sulfate solution 被引量:2
19
作者 薛建荣 钟宏 +2 位作者 王帅 李昌新 武芳芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1126-1137,共12页
The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode cur... The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode current efficiency and initial pH 7.0?8.0 is the optimized pH for high cathode current efficiency. The analyses of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate the compact morphology and nanocrystalline structure of electrodeposits. X-ray photoelectron spectrometry (XPS) analysis shows that the elements of Mn, Si and O exist in the deposit. The solution chemistry calculations of sulfate electrolyte and sodium silicate solution indicate that species of Mn2+, MnSO4, Mn(SO4)2?2 , Mn2+, MnSiO3, Mn(NH3)2+, SiO32?and HSiO3? are the main active species during the process of manganese electrodeposition. The reaction trend between Mn2+ and Si-containing ions is confirmed by the thermodynamic analysis. In addition, polarization curve tests confirm that sodium silicate can increase the overpotential of hydrogen evolution reaction, and then indirectly improve the cathode current efficiency. 展开更多
关键词 electrodeposition MANGANESE sodium silicate electrodeposit structure hydrogen evolution reaction
下载PDF
Electrodeposition behavior of bright nickel in air and water-stable betaine·HCl-ethylene glycol ionic liquid 被引量:5
20
作者 龚凯 华一新 +4 位作者 徐存英 张启波 李艳 汝娟坚 介亚菲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2458-2465,共8页
The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic volta... The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic voltammetry and chronoamperometry.The results indicated that the reduction of Ni(Ⅱ) on CS electrode via a diffusion-controlled quasi-reversible process was much more facile and easier than that occurred on GC electrode,which followed a diffusion-controlled three-dimensional instantaneous nucleation and growth.Scanning electron microscopy was used to observe that the deposit was dense and contained fine crystallites with average size of(80±4) nm.Energy dispersive spectrometer analysis showed that the obtained deposit was metallic nickel.X-ray diffraction spectroscopy indicated that(111) plane was the most preferred crystal orientation.The nickel deposit was luminous and bright,and had good adhesion with the CS substrate. 展开更多
关键词 electrodeposition bright nickel nucleation mechanism betaine·HCl ethylene glycol
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部