Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
The effect of Al2O3 on the Cu-ZnO-Al2O3-SiO2 catalysts prepared by a pseudo sol-gel method has been investigated and these catalysts were characterized by XRD, H2-TPR, XPS, NH3-TPD and CO2- TPD techniques. As revealed...The effect of Al2O3 on the Cu-ZnO-Al2O3-SiO2 catalysts prepared by a pseudo sol-gel method has been investigated and these catalysts were characterized by XRD, H2-TPR, XPS, NH3-TPD and CO2- TPD techniques. As revealed by XRD and H2-TPR, the added alumina produces high dispersion of CuO and makes the reduction of CuO difficult. XPS analysis detects a remarkably high Al^3+ enrichment at the surface of calcined samples, along with a decrease of Eb of Cu 2p3/2, which confirms the Cu-Al interaction. Another important role of Al203 would be to incorporate into the SiO2 structure to form the acid-base sites for ether formation. The reaction results shows that the addition of Al2O3 exhibits a promoting effect on the CO2 conversion only when its content is below 1.4%, and an optimal DME selectivity is obtained when 4.0%Al2O3 is added, indicating a better 'synergistic effect' is present between the methanol forming component and the acidic component in bifunctional catalysts. Possible relationship between the catalytic activity and the Cu-Al interaction as well as the surface acidity is discussed.展开更多
In the present study, we developed a multi-component one-dimensional mathematical model for simulation and optimisation of a commercial catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from ...In the present study, we developed a multi-component one-dimensional mathematical model for simulation and optimisation of a commercial catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, operating in a churn-turbulent regime. DME productivity and CO conversion were optimised by tuning operating conditions, such as superficial gas velocity, catalyst concentration, catalyst mass over molar gas flow rate (W/F), syngas composition, pressure and temperature. Reactor modelling was accomplished utilising mass balance, global kinetic models and heterogeneous hydrodynamics. In the heterogeneous flow regime, gas was distributed into two bubble phases: small and large. Simulation results were validated using data obtained from a pilot plant. The developed model is also applicable for the design of large-scale slurry reactors.展开更多
A three-phase reactor mathematical model was set up to simulate and design a three-phase bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas, considering both the influence of part inert c...A three-phase reactor mathematical model was set up to simulate and design a three-phase bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas, considering both the influence of part inert carrier backmixing on transfer and the influence of catalyst grain sedimentation on reaction. On the basis of this model, the influences of the size and reaction conditions of a 100000 t/a DME reactor on capacity were investigated. The optimized size of the 10000 t/a DME synthesis reactor was proposed as follows: diameter 3.2 m, height 20 m, built-in 400 tube heat exchanger (Ф 38×2 mm), and inert heat carrier paraffin oil 68 t and catalyst 34.46 t. Reaction temperature and pressure were important factors influencing the reaction conversion for different size reactors. Under the condition of uniform catalyst concentration distribution, higher pressure and temperature were proposed to achieve a higher production capacity of DME. The best ratio of fresh syngas for DME synthesis was 2.04.展开更多
The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over amethanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in atubular integral reactor at 3-7 MPa and 220-260...The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over amethanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in atubular integral reactor at 3-7 MPa and 220-260℃. The three reactions including methanol synthesisfrom CO and H_2, CO_2 and H_2, and methanol dehydration were chosen as the independent reactions.The L-H kinetic model was presented for dimethyl ether synthesis and the parameters of the modelwere obtained by using simplex method combined with genetic algorithm. The model is reliableaccording to statistical analysis and residual error analysis. The synergy effect of the reactionsover the bifunctional catalyst was compared with the effect for methanol synthesis catalyst underthe same conditions based on the model. The effects of syngas containing Na on the reactions werealso simulated.展开更多
H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalyti...H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalytic performance of the dehydration of methanol to dimethyl ether (DME) over the synthesized H-ZSM-5 zeolite were studied. The catalysts were characterized by N2 adsorption-desorption, XRD, NH3-TPD, TGA/DTA, and SEM techniques. The full factorial design of experiments was applied to the synthesis of H-ZSM-5 zeolite and the effects of synthesis conditions and their interaction on the yield of DME as the response variable were determined. Analysis of variance showed that two variables and their interaction significantly affected the response. According to the experimental results, the optimized catalyst prepared at 170℃ with the Si/A1 molar ratio of 100 showed the best catalytic performance among the tested H-ZSM-5 zeolite.展开更多
3,3′-Dimethyl-dibenzo-18-crown-6 was synthesized and characterized by elemental analysis, FT-IR, ^1H NMR, UV, MS spectra and X-ray single-crystal diffraction. It belongs to orthorhombic, space group Pna21 with a = 8....3,3′-Dimethyl-dibenzo-18-crown-6 was synthesized and characterized by elemental analysis, FT-IR, ^1H NMR, UV, MS spectra and X-ray single-crystal diffraction. It belongs to orthorhombic, space group Pna21 with a = 8.0790(18), b = 16.780(4), c = 15.222(3) .A, Z= 4, V= 2063.6(8) A3 Dc = 1.250 g/cm^3,μ = 0.090 mm^-1, F(000) = 832, R = 0.0474 and wR = 0.1103. According to structural analysis, the title compound possesses a boat-like configuration.展开更多
Among the reactions catalyzed by zeolites there are some that exhibit high selectivity due to the spatial confinement effect of the zeolite framework.Tailoring the acidity,particularly the distribution and location of...Among the reactions catalyzed by zeolites there are some that exhibit high selectivity due to the spatial confinement effect of the zeolite framework.Tailoring the acidity,particularly the distribution and location of the Bronsted acid sites in the zeolite is effective for making it a better catalyst for these reactions.We prepared a series of H-mordenite(H-MOR) samples by varying the composition of the sol-gel,using different structure directing agents and post-treatment.NH3-TPD and IR characterization of adsorbed pyridine were employed to determine the amount of Bronsted acid sites in the 8-membered ring and 12-membered ring channels.It was shown that controlled synthesis was a promising approach to improve the concentration of Bronsted acid sites in MOR,even with a low Al content.Using an appropriate composition of Si and Al in the sol-gel favored a higher proportion of Bronsted acid sites in the 8-membered ring channels.HMI as a structure-direct agent gave an obvious enrichment of Bronsted acid sites in the 8-membered ring.Carbonylation of dimethyl ether was used as a probe reaction to examine the modification of the acid properties,especially the Bronsted acid sites in the 8-membered ring channels.There was a linear relationship between methyl acetate formation and the number of Bronsted acid sites in the 8-membered ring channels,demonstrating the successful modification of acid properties.Our results provide information for the rational design and modification of zeolites with spatial constraints.展开更多
In this study, a comprehensive three-dimensional dynamic model was developed for simulating the flow behavior and catalytic coupling reactions for direct synthesis of dimethyl ether (DME) from syngas including CO2 i...In this study, a comprehensive three-dimensional dynamic model was developed for simulating the flow behavior and catalytic coupling reactions for direct synthesis of dimethyl ether (DME) from syngas including CO2 in a fixed bed reactor at commercial scale under both adiabatic and isothermal conditions. For this purpose, a computational fluid dynamic (CFD) simulation was carried out through which the standard κ-ε model with 10% turbulence tolerations was implemented. At first, an adiabatic fixed bed reactor was simulated and the obtained results were compared with those of an equivalent commercial slurry reactor. Then the concentration and temperature profiles along the reactor were predicted. Consequently, the optimum temperature, pressure, hydrogen to carbon monoxide ratio in the feedstock and the reactor height under different operation conditions were determined. Finally, the results obtained from this three-dimensional dynamic model under appropriate industrial boundary conditions were compared with those of others available in literature to verify the model. Next, through changing the boundary conditions, the simulation was performed for an isothermal fixed bed reactor. Furthermore, it was revealed that, under isothermal conditions, the performed equilibrium simulations were done for a single phase system. Considering the simultaneous effects of temperature and pressure, the optimum operation conditions for the isothermal and adiabatic fixed bed reactors were investigated. The results of the H2+CO conversions indicated that, under isothermal condition, higher conversion could be achieved, in compared with that under adiabatic conditions. Then, the effects of various operating parameters, including the pressure and temperature, of the reactor on the DME production were examined. Ultimately, the CFD modeling results generated in the present work showed reasonable agreement with previously obtained data available in the literature.展开更多
In this paper,an axial dispersion mathematical model is developed to simulate a three-phase slurry bubble column reactor for direct synthesis of dimethyl ether(DME) from syngas.This large-scale reactor is modeled us...In this paper,an axial dispersion mathematical model is developed to simulate a three-phase slurry bubble column reactor for direct synthesis of dimethyl ether(DME) from syngas.This large-scale reactor is modeled using mass and energy balances,catalyst sedimentation andsingle-bubble as well as two-bubbles class flow hydrodynamics.A comparison between the two hydrodynamic models through pilot plantexperimental data from the literature shows that heterogeneous two-bubbles flow model is in better agreement with the experimental data thanhomogeneous single-bubble gas flow model.Also,by investigating the heterogeneous gas flow and axial dispersion model for small bubblesas well as the large bubbles and slurry(i.e.including paraffins and the catalyst) phase,the temperature profile along the reactor is obtained.Acomparison between isothermal and non-isothermal reactors reveals no obvious performance difference between them.The optimum values ofreactor diameter and height were obtained at 7 m and 50 m,respectively.The effects of operating variables on the axial catalyst distribution,DME productivity and CO conversion are also investigated in this research.展开更多
Direct synthesis of dimethyl ether(DME)by CO2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods:co-precipitation,sol-gel,and solid grinding to produce mixed Cu,ZnO,ZrO2 cata...Direct synthesis of dimethyl ether(DME)by CO2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods:co-precipitation,sol-gel,and solid grinding to produce mixed Cu,ZnO,ZrO2 catalysts that were physically mixed with a commercial ferrierite(FER)zeolite.The catalysts were characterized by N2 physisorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),temperature programmed desorption of CO2(CO2-TPD),temperature programmed desorption of NH3(NH3-TPD),and temperature programmed H2 reduction(H2-TPR).The results demonstrate that smaller CuO and Cu crystallite sizes resulting in better dispersion of the active phases,higher surface area,and lower reduction temperature are all favorable for catalytic activity.The reaction mechanism has been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS).Methanol appears to be formed via the bidentate-formate(b-HCOO)species undergoing stepwise hydrogenation,while DME formation occurs from methanol dehydration and reaction of two surface methoxy groups.展开更多
A series of Pd/γ-Al_(2)O_(3) hybrid catalysts were prepared by impregnation and subsequent calcination under microwave irradiation.The catalysts were used for direct synthesis of dimethylether(DME)from syngas.The res...A series of Pd/γ-Al_(2)O_(3) hybrid catalysts were prepared by impregnation and subsequent calcination under microwave irradiation.The catalysts were used for direct synthesis of dimethylether(DME)from syngas.The results show that calcination under microwave irradiation improved both the activity and selectivity of the catalysts for DME synthesis.The optimum power of the microwave was determined to be 420 W.Under such optimum conditions,CO conversion,DME selectivity and time space yield of DME were 60.1%,67.0%,and 21.5 mmol$mL-1$h^(-1),respectively.Based on various characterizations such as nitrogen physisorption,X-ray diffraction,COtemperature-programmed desorption,and Fourier transform infrared spectral analysis,the promotional effect of the microwave irradiation on the catalytic property was mainly attributed to both the higher dispersion of Pd and the significant increase in the adsorption on the CO-bridge of Pd.Microwave irradiation with very high power led to the increase in CO-bridge adsorption and thereby decreased the catalytic activity,whereas the coverage by metallic Pd of the active sites on acidicγ-Al_(2)O_(3) significantly occurred under microwave irradiation with very low power,resulting in a decrease in the selectivity to DME.展开更多
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
文摘The effect of Al2O3 on the Cu-ZnO-Al2O3-SiO2 catalysts prepared by a pseudo sol-gel method has been investigated and these catalysts were characterized by XRD, H2-TPR, XPS, NH3-TPD and CO2- TPD techniques. As revealed by XRD and H2-TPR, the added alumina produces high dispersion of CuO and makes the reduction of CuO difficult. XPS analysis detects a remarkably high Al^3+ enrichment at the surface of calcined samples, along with a decrease of Eb of Cu 2p3/2, which confirms the Cu-Al interaction. Another important role of Al203 would be to incorporate into the SiO2 structure to form the acid-base sites for ether formation. The reaction results shows that the addition of Al2O3 exhibits a promoting effect on the CO2 conversion only when its content is below 1.4%, and an optimal DME selectivity is obtained when 4.0%Al2O3 is added, indicating a better 'synergistic effect' is present between the methanol forming component and the acidic component in bifunctional catalysts. Possible relationship between the catalytic activity and the Cu-Al interaction as well as the surface acidity is discussed.
文摘In the present study, we developed a multi-component one-dimensional mathematical model for simulation and optimisation of a commercial catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, operating in a churn-turbulent regime. DME productivity and CO conversion were optimised by tuning operating conditions, such as superficial gas velocity, catalyst concentration, catalyst mass over molar gas flow rate (W/F), syngas composition, pressure and temperature. Reactor modelling was accomplished utilising mass balance, global kinetic models and heterogeneous hydrodynamics. In the heterogeneous flow regime, gas was distributed into two bubble phases: small and large. Simulation results were validated using data obtained from a pilot plant. The developed model is also applicable for the design of large-scale slurry reactors.
基金This work was supported by the National Basic Research Program of China (2005CB221205)
文摘A three-phase reactor mathematical model was set up to simulate and design a three-phase bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas, considering both the influence of part inert carrier backmixing on transfer and the influence of catalyst grain sedimentation on reaction. On the basis of this model, the influences of the size and reaction conditions of a 100000 t/a DME reactor on capacity were investigated. The optimized size of the 10000 t/a DME synthesis reactor was proposed as follows: diameter 3.2 m, height 20 m, built-in 400 tube heat exchanger (Ф 38×2 mm), and inert heat carrier paraffin oil 68 t and catalyst 34.46 t. Reaction temperature and pressure were important factors influencing the reaction conversion for different size reactors. Under the condition of uniform catalyst concentration distribution, higher pressure and temperature were proposed to achieve a higher production capacity of DME. The best ratio of fresh syngas for DME synthesis was 2.04.
基金Supported by Development Project of Shanghai Priority Academic Discipline
文摘The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over amethanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in atubular integral reactor at 3-7 MPa and 220-260℃. The three reactions including methanol synthesisfrom CO and H_2, CO_2 and H_2, and methanol dehydration were chosen as the independent reactions.The L-H kinetic model was presented for dimethyl ether synthesis and the parameters of the modelwere obtained by using simplex method combined with genetic algorithm. The model is reliableaccording to statistical analysis and residual error analysis. The synergy effect of the reactionsover the bifunctional catalyst was compared with the effect for methanol synthesis catalyst underthe same conditions based on the model. The effects of syngas containing Na on the reactions werealso simulated.
文摘H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalytic performance of the dehydration of methanol to dimethyl ether (DME) over the synthesized H-ZSM-5 zeolite were studied. The catalysts were characterized by N2 adsorption-desorption, XRD, NH3-TPD, TGA/DTA, and SEM techniques. The full factorial design of experiments was applied to the synthesis of H-ZSM-5 zeolite and the effects of synthesis conditions and their interaction on the yield of DME as the response variable were determined. Analysis of variance showed that two variables and their interaction significantly affected the response. According to the experimental results, the optimized catalyst prepared at 170℃ with the Si/A1 molar ratio of 100 showed the best catalytic performance among the tested H-ZSM-5 zeolite.
基金This project was supported by the Natural Science Foundation of Shandong Province (No.Y2003 D01)
文摘3,3′-Dimethyl-dibenzo-18-crown-6 was synthesized and characterized by elemental analysis, FT-IR, ^1H NMR, UV, MS spectra and X-ray single-crystal diffraction. It belongs to orthorhombic, space group Pna21 with a = 8.0790(18), b = 16.780(4), c = 15.222(3) .A, Z= 4, V= 2063.6(8) A3 Dc = 1.250 g/cm^3,μ = 0.090 mm^-1, F(000) = 832, R = 0.0474 and wR = 0.1103. According to structural analysis, the title compound possesses a boat-like configuration.
基金supported by the National Natural Science Foundation of China(21325626,21406120)the Postdoctoral Science Foundation of China(2014M560181,2015T80214)~~
文摘Among the reactions catalyzed by zeolites there are some that exhibit high selectivity due to the spatial confinement effect of the zeolite framework.Tailoring the acidity,particularly the distribution and location of the Bronsted acid sites in the zeolite is effective for making it a better catalyst for these reactions.We prepared a series of H-mordenite(H-MOR) samples by varying the composition of the sol-gel,using different structure directing agents and post-treatment.NH3-TPD and IR characterization of adsorbed pyridine were employed to determine the amount of Bronsted acid sites in the 8-membered ring and 12-membered ring channels.It was shown that controlled synthesis was a promising approach to improve the concentration of Bronsted acid sites in MOR,even with a low Al content.Using an appropriate composition of Si and Al in the sol-gel favored a higher proportion of Bronsted acid sites in the 8-membered ring channels.HMI as a structure-direct agent gave an obvious enrichment of Bronsted acid sites in the 8-membered ring.Carbonylation of dimethyl ether was used as a probe reaction to examine the modification of the acid properties,especially the Bronsted acid sites in the 8-membered ring channels.There was a linear relationship between methyl acetate formation and the number of Bronsted acid sites in the 8-membered ring channels,demonstrating the successful modification of acid properties.Our results provide information for the rational design and modification of zeolites with spatial constraints.
文摘In this study, a comprehensive three-dimensional dynamic model was developed for simulating the flow behavior and catalytic coupling reactions for direct synthesis of dimethyl ether (DME) from syngas including CO2 in a fixed bed reactor at commercial scale under both adiabatic and isothermal conditions. For this purpose, a computational fluid dynamic (CFD) simulation was carried out through which the standard κ-ε model with 10% turbulence tolerations was implemented. At first, an adiabatic fixed bed reactor was simulated and the obtained results were compared with those of an equivalent commercial slurry reactor. Then the concentration and temperature profiles along the reactor were predicted. Consequently, the optimum temperature, pressure, hydrogen to carbon monoxide ratio in the feedstock and the reactor height under different operation conditions were determined. Finally, the results obtained from this three-dimensional dynamic model under appropriate industrial boundary conditions were compared with those of others available in literature to verify the model. Next, through changing the boundary conditions, the simulation was performed for an isothermal fixed bed reactor. Furthermore, it was revealed that, under isothermal conditions, the performed equilibrium simulations were done for a single phase system. Considering the simultaneous effects of temperature and pressure, the optimum operation conditions for the isothermal and adiabatic fixed bed reactors were investigated. The results of the H2+CO conversions indicated that, under isothermal condition, higher conversion could be achieved, in compared with that under adiabatic conditions. Then, the effects of various operating parameters, including the pressure and temperature, of the reactor on the DME production were examined. Ultimately, the CFD modeling results generated in the present work showed reasonable agreement with previously obtained data available in the literature.
文摘In this paper,an axial dispersion mathematical model is developed to simulate a three-phase slurry bubble column reactor for direct synthesis of dimethyl ether(DME) from syngas.This large-scale reactor is modeled using mass and energy balances,catalyst sedimentation andsingle-bubble as well as two-bubbles class flow hydrodynamics.A comparison between the two hydrodynamic models through pilot plantexperimental data from the literature shows that heterogeneous two-bubbles flow model is in better agreement with the experimental data thanhomogeneous single-bubble gas flow model.Also,by investigating the heterogeneous gas flow and axial dispersion model for small bubblesas well as the large bubbles and slurry(i.e.including paraffins and the catalyst) phase,the temperature profile along the reactor is obtained.Acomparison between isothermal and non-isothermal reactors reveals no obvious performance difference between them.The optimum values ofreactor diameter and height were obtained at 7 m and 50 m,respectively.The effects of operating variables on the axial catalyst distribution,DME productivity and CO conversion are also investigated in this research.
基金supported by the China Scholarship Council(No.201608140182)the University of Wyomingand State of Wyoming。
文摘Direct synthesis of dimethyl ether(DME)by CO2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods:co-precipitation,sol-gel,and solid grinding to produce mixed Cu,ZnO,ZrO2 catalysts that were physically mixed with a commercial ferrierite(FER)zeolite.The catalysts were characterized by N2 physisorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),temperature programmed desorption of CO2(CO2-TPD),temperature programmed desorption of NH3(NH3-TPD),and temperature programmed H2 reduction(H2-TPR).The results demonstrate that smaller CuO and Cu crystallite sizes resulting in better dispersion of the active phases,higher surface area,and lower reduction temperature are all favorable for catalytic activity.The reaction mechanism has been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS).Methanol appears to be formed via the bidentate-formate(b-HCOO)species undergoing stepwise hydrogenation,while DME formation occurs from methanol dehydration and reaction of two surface methoxy groups.
基金supported by the Special Fund for Major State Basic Research Project(Grant 2005CB221204-G)the Fund from the Natural Science Foundation of China for Innovative Research Group(Grant 50921002)+1 种基金the Research Fund from Key Laboratory of Coal Processing&Efficient Utilization,Ministry of Education(Grant CPEUKF08-09)Yong Teacher Research Foundation from China University of Mining&Technology(Grant OH080254).
文摘A series of Pd/γ-Al_(2)O_(3) hybrid catalysts were prepared by impregnation and subsequent calcination under microwave irradiation.The catalysts were used for direct synthesis of dimethylether(DME)from syngas.The results show that calcination under microwave irradiation improved both the activity and selectivity of the catalysts for DME synthesis.The optimum power of the microwave was determined to be 420 W.Under such optimum conditions,CO conversion,DME selectivity and time space yield of DME were 60.1%,67.0%,and 21.5 mmol$mL-1$h^(-1),respectively.Based on various characterizations such as nitrogen physisorption,X-ray diffraction,COtemperature-programmed desorption,and Fourier transform infrared spectral analysis,the promotional effect of the microwave irradiation on the catalytic property was mainly attributed to both the higher dispersion of Pd and the significant increase in the adsorption on the CO-bridge of Pd.Microwave irradiation with very high power led to the increase in CO-bridge adsorption and thereby decreased the catalytic activity,whereas the coverage by metallic Pd of the active sites on acidicγ-Al_(2)O_(3) significantly occurred under microwave irradiation with very low power,resulting in a decrease in the selectivity to DME.