Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents...Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.展开更多
The study aims to demonstrate the suitability of the 3DPMD for the production of titanium components with and without reinforcing particles in layer-by-layer design. Various demonstrators are prepared and analyzed. Th...The study aims to demonstrate the suitability of the 3DPMD for the production of titanium components with and without reinforcing particles in layer-by-layer design. Various demonstrators are prepared and analyzed. The microstructure, the porosity and the hardness values of the different structures are compared with each other through metallographic cross-sections. The uniform distribution of the carbides and the interaction with the matrix was analyzed by SEM and EDX.The miller-test method(ASTM G75-07) was used to determine data for the relative abrasivity of the structures. In summary, 3DPMD offers the possibility to produce titanium structures with and without reinforced particles. Using automated routines, it is possible to generate metal structures using welding robots directly from the CAD drawings. Microstructures and properties are directly related to the process and therefore material-process-property relationships are discussed within this work.展开更多
Here we develop a two-dimensional numerical model of wire and arc additive manufacturing(WAAM)to determine the relationship between process parameters and deposition geometry,and to reveal the influence mechanism of p...Here we develop a two-dimensional numerical model of wire and arc additive manufacturing(WAAM)to determine the relationship between process parameters and deposition geometry,and to reveal the influence mechanism of process parameters on deposition geometry.From the predictive results,a higher wire feed rate matched with a higher current could generate a larger and hotter droplet,and thus transfer more thermal and kinetic energy into melt pool,which results in a wider and lower deposited layer with deeper penetration.Moreover,a higher preheat temperature could enlarge melt pool volume and thus enhance heat and mass convection along both axial and radial directions,which gives rise to a wider and higher deposited layer with deeper penetration.These findings offer theoretical guidelines for the acquirement of acceptable deposition shape and optimal deposition quality through adjusting process parameters in fabricating WAAM components.展开更多
The main characteristics, applications, the emphases of manufacturing process are introduced, and the research of new product of rigid-flex Printed Circuit Board (PCB) is also described. In particular, the plasma de...The main characteristics, applications, the emphases of manufacturing process are introduced, and the research of new product of rigid-flex Printed Circuit Board (PCB) is also described. In particular, the plasma desmear process, which is the crucial problems of manufacturing process, is discussed in detail. Samsung 4-layer rigid-flex PCB has been developed successfully, and the qualification rate reaches to 89.4%.展开更多
The real-time monitoring of the weld pool during deposition is important for automatic control in plasma arc additive manufacturing.To obtain a high deposition accuracy,it is essential to maintain a stable weld pool s...The real-time monitoring of the weld pool during deposition is important for automatic control in plasma arc additive manufacturing.To obtain a high deposition accuracy,it is essential to maintain a stable weld pool size.In this study,a novel passive visual method is proposed to measure the weld pool length.Using the proposed method,the image quality was improved by designing a special visual system that employed an endoscope and a camera.It also includes pixel brightness-based and gradient-based algorithms that can adaptively detect feature points at the boundary when the weld pool geometry changes.This algorithm can also be applied to materials with different solidification characteristics.Calibration was performed to measure the real weld pool length in world coordinates,and outlier rejection was performed to increase the accuracy of the algorithm.Additionally,tests were carried out on the intersection component,and the results showed that the proposed method performed well in tracking the changing weld pool length and was applicable to the real-time monitoring of different types of materials.展开更多
In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF...In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF) and pulse plasma sintering(PPS) were used to consolidate the bulk materials. A comparison of the properties of the fabricated alloys with those of a conventionally extruded one was carried out using methods that characterized the microstructure and corrosion resistance. When compared to their conventionally extruded counterpart, LPBF and PPS materials exhibited refined microstructures with low enrichment in Al Li and coarse Al, Zn, Mn precipitates. The main drawback of the LPBF alloy, printed for the needs of this study, was its porosity, which had a negative effect on its corrosion. The presence of unrecrystallized particle boundaries in the PPS alloy was also unbeneficial with regard to corrosion. The advantage of the LPBF and PPS processes was the ability to change the proportion of α(Mg) to β(Li), which when the complete consolidation of the material is achievable, may increase the corrosion resistance of dual-structured Mg-Li alloys. The results show that powder metallurgy routes have a wide potential to be used for the manufacture of Mg-Li based alloys.展开更多
Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of col...Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of columnar remnants of directionally solidifiedβ-grains, with interior inhabited by colonies of finerα-plate structures, were found in samples produced by layered plasma welding of Ti-6Al-4V alloy. The application of in-situ tensile tests combined with rapid offline electron backscatter diffraction (EBSD) analysis provides a powerful tool for understanding and drawing qualitative correlations between microstructural features and deformation characteristics. Non-uniform deformation occurs due to a strong variation in strain response between colonies and across columnar grain boundaries. Prismatic and basal slip systems are active, with the prismatic systems contributing to the most severe deformation through coarse and widely spaced slip lines. Certain colonies behave as microstructural units, with easy slip transmission across the entire colony. Other regions exhibit significant deformation mismatch, with local build-up of strain gradients and stress concentration. The segmentation occurs due to the growth morphology and variant constraints imposed by the columnar solidification structures through orientation relationships, interface alignment and preferred growth directions. Tensile tests perpendicular to columnar structures reveal deformation localization at columnar grain boundaries. In this work connections are made between the theoretical macro- and microstructural growth mechanisms and the observed microstructure of the Ti-6Al-4V alloy, which in turn is linked to observations during in-situ tensile tests.展开更多
Plasma surfacing is an important enabling technology in high-performance coating applications. Recently, it is applied to rapid prototyping/tooling to reduce development time and manufacturing cost for the development...Plasma surfacing is an important enabling technology in high-performance coating applications. Recently, it is applied to rapid prototyping/tooling to reduce development time and manufacturing cost for the development of new products. However, this technology is in its infancy, it is essential to understand clearly how process variables relate to deposit microstructure and properties for plasma deposition manufacturing process control. In this paper, layer appearance of single surfacing under different parametem such as plasma current, voltage, powder feedrate and travel speed is studied. Back-propagation neural networks are used to associate the depositing process variables with the features of the deposit layer shape. These networks can be effectively implemented to estimate the layer shape. The results Indicate that neural networks can yield fairly accurate results and can be used as a practical tool in plasma deposition manufacturing process.展开更多
General principle and layout of the prototype machine is introduced. Primary results of producing a metal vase to investigate the proper selection of numerous technical parameters are presented.
This paper presents an investigation on depo- sition of Inconel-625 using laser rapid manufacturing (LRM) and plasma transferred arc (PTA) deposition in individual and tandem mode. LRM has advantages in terms of d...This paper presents an investigation on depo- sition of Inconel-625 using laser rapid manufacturing (LRM) and plasma transferred arc (PTA) deposition in individual and tandem mode. LRM has advantages in terms of dimensional accuracy, improved mechanical properties, finer process control, reduced heat input and lower thermal distortion, while PTA scores more in terms of lower initial investment, lower running cost and higher deposition rate. To quantify the clubbed advantages and limitations of both processes, these were studied individually and in tandem. A number of samples were deposited at different process parameters like power, scan speed, powder feed rate. They were subjected to tensile test, adhesion-cohesion test, impact test and micro hardness measurement. The results of individual tests showed the comparable mechanical prop- erties with i20% variation. The mixed dendritic-cellular and dendritic-columnar microstructures were respectively observed for LRM and PTA deposits with a distinct inter- face for the case of tandem deposition. The interface strength of tandem deposits was evaluated employing adhesion-cohesion test, and it was found to be (325 i 35) MPa. The study confirmed the viability of LRM and PTA deposition in tandem for hybrid manufacturing.展开更多
A solid/liquid/gas unified model has been developed to investigate the gradient composition formation during the plasma deposition manufacturing(PDM) composite materials process. In this model,an enthalpy porosity mod...A solid/liquid/gas unified model has been developed to investigate the gradient composition formation during the plasma deposition manufacturing(PDM) composite materials process. In this model,an enthalpy porosity model was applied to deal with the melting and solidification of the deposited layer,and a level-set approach was introduced to track the evolution of the free surface of the molten pool and the deposited layer. Moreover,complicated physical phenomena occurring at the liquid/gas interface,including forced convection heat loss,heat emission and plasma heat source,have been incorporated into the governing equations by source terms. In this study,the numerical experiment of nickel base alloy powder deposited on the medium steel substrate by PDM technique was implemented based on the staggered grid and SIMPLEC algorithm. Concentration gradient distribution of the solute material at the composite material interface,fluid flow and temperature distribution in the molten pool and the deposited layer have been investigated in detail.展开更多
基金the financial support from Intecells Inc.via an award number AWD_19-08-0127the support from Paul M.Rady Mechanical Engineering Department at University of Colorado Boulder
文摘Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.
文摘The study aims to demonstrate the suitability of the 3DPMD for the production of titanium components with and without reinforcing particles in layer-by-layer design. Various demonstrators are prepared and analyzed. The microstructure, the porosity and the hardness values of the different structures are compared with each other through metallographic cross-sections. The uniform distribution of the carbides and the interaction with the matrix was analyzed by SEM and EDX.The miller-test method(ASTM G75-07) was used to determine data for the relative abrasivity of the structures. In summary, 3DPMD offers the possibility to produce titanium structures with and without reinforced particles. Using automated routines, it is possible to generate metal structures using welding robots directly from the CAD drawings. Microstructures and properties are directly related to the process and therefore material-process-property relationships are discussed within this work.
基金supported by National Natural Science Foundation of China(Nos.52077172,U1966602)Shaanxi Province‘Sanqin scholar-s’Innovation Team Project(Key technology of advanced DC power equipment and its industrialization demonstration innovation team of Xi’an Jiaotong University)。
文摘Here we develop a two-dimensional numerical model of wire and arc additive manufacturing(WAAM)to determine the relationship between process parameters and deposition geometry,and to reveal the influence mechanism of process parameters on deposition geometry.From the predictive results,a higher wire feed rate matched with a higher current could generate a larger and hotter droplet,and thus transfer more thermal and kinetic energy into melt pool,which results in a wider and lower deposited layer with deeper penetration.Moreover,a higher preheat temperature could enlarge melt pool volume and thus enhance heat and mass convection along both axial and radial directions,which gives rise to a wider and higher deposited layer with deeper penetration.These findings offer theoretical guidelines for the acquirement of acceptable deposition shape and optimal deposition quality through adjusting process parameters in fabricating WAAM components.
文摘The main characteristics, applications, the emphases of manufacturing process are introduced, and the research of new product of rigid-flex Printed Circuit Board (PCB) is also described. In particular, the plasma desmear process, which is the crucial problems of manufacturing process, is discussed in detail. Samsung 4-layer rigid-flex PCB has been developed successfully, and the qualification rate reaches to 89.4%.
基金support provided by the China Scholarship Council and Basic and Applied Basic Research Foundation of Guangdong Province(Grant No.2022A1515110733).
文摘The real-time monitoring of the weld pool during deposition is important for automatic control in plasma arc additive manufacturing.To obtain a high deposition accuracy,it is essential to maintain a stable weld pool size.In this study,a novel passive visual method is proposed to measure the weld pool length.Using the proposed method,the image quality was improved by designing a special visual system that employed an endoscope and a camera.It also includes pixel brightness-based and gradient-based algorithms that can adaptively detect feature points at the boundary when the weld pool geometry changes.This algorithm can also be applied to materials with different solidification characteristics.Calibration was performed to measure the real weld pool length in world coordinates,and outlier rejection was performed to increase the accuracy of the algorithm.Additionally,tests were carried out on the intersection component,and the results showed that the proposed method performed well in tracking the changing weld pool length and was applicable to the real-time monitoring of different types of materials.
文摘In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF) and pulse plasma sintering(PPS) were used to consolidate the bulk materials. A comparison of the properties of the fabricated alloys with those of a conventionally extruded one was carried out using methods that characterized the microstructure and corrosion resistance. When compared to their conventionally extruded counterpart, LPBF and PPS materials exhibited refined microstructures with low enrichment in Al Li and coarse Al, Zn, Mn precipitates. The main drawback of the LPBF alloy, printed for the needs of this study, was its porosity, which had a negative effect on its corrosion. The presence of unrecrystallized particle boundaries in the PPS alloy was also unbeneficial with regard to corrosion. The advantage of the LPBF and PPS processes was the ability to change the proportion of α(Mg) to β(Li), which when the complete consolidation of the material is achievable, may increase the corrosion resistance of dual-structured Mg-Li alloys. The results show that powder metallurgy routes have a wide potential to be used for the manufacture of Mg-Li based alloys.
文摘Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of columnar remnants of directionally solidifiedβ-grains, with interior inhabited by colonies of finerα-plate structures, were found in samples produced by layered plasma welding of Ti-6Al-4V alloy. The application of in-situ tensile tests combined with rapid offline electron backscatter diffraction (EBSD) analysis provides a powerful tool for understanding and drawing qualitative correlations between microstructural features and deformation characteristics. Non-uniform deformation occurs due to a strong variation in strain response between colonies and across columnar grain boundaries. Prismatic and basal slip systems are active, with the prismatic systems contributing to the most severe deformation through coarse and widely spaced slip lines. Certain colonies behave as microstructural units, with easy slip transmission across the entire colony. Other regions exhibit significant deformation mismatch, with local build-up of strain gradients and stress concentration. The segmentation occurs due to the growth morphology and variant constraints imposed by the columnar solidification structures through orientation relationships, interface alignment and preferred growth directions. Tensile tests perpendicular to columnar structures reveal deformation localization at columnar grain boundaries. In this work connections are made between the theoretical macro- and microstructural growth mechanisms and the observed microstructure of the Ti-6Al-4V alloy, which in turn is linked to observations during in-situ tensile tests.
基金Project supported by National Natural Science Foundation of China ( Grant No .50075032) , and National High-Technology Research and Development Program of China ( Grant No .2001AA421150)
文摘Plasma surfacing is an important enabling technology in high-performance coating applications. Recently, it is applied to rapid prototyping/tooling to reduce development time and manufacturing cost for the development of new products. However, this technology is in its infancy, it is essential to understand clearly how process variables relate to deposit microstructure and properties for plasma deposition manufacturing process control. In this paper, layer appearance of single surfacing under different parametem such as plasma current, voltage, powder feedrate and travel speed is studied. Back-propagation neural networks are used to associate the depositing process variables with the features of the deposit layer shape. These networks can be effectively implemented to estimate the layer shape. The results Indicate that neural networks can yield fairly accurate results and can be used as a practical tool in plasma deposition manufacturing process.
基金Supported by the Natural Science Foundation of China (50075032) and State High-Technology Development Program of China (2001AA421150)
文摘General principle and layout of the prototype machine is introduced. Primary results of producing a metal vase to investigate the proper selection of numerous technical parameters are presented.
基金the support of PID2021-124341OB-C22 and PID2021-124341OB-C21(MCIU/AEI/FEDER,UE)ADITIMAT-CM(S2018/NMT-4411,Regional Government of Madrid and EU Structural Funds)+2 种基金the support of RYC-2017-21843the support of PEJD-2019-POST/IND-16119(Regional Government of Madrid and EU Structural Funds)FEI-EU-20-05(UCM)。
文摘This paper presents an investigation on depo- sition of Inconel-625 using laser rapid manufacturing (LRM) and plasma transferred arc (PTA) deposition in individual and tandem mode. LRM has advantages in terms of dimensional accuracy, improved mechanical properties, finer process control, reduced heat input and lower thermal distortion, while PTA scores more in terms of lower initial investment, lower running cost and higher deposition rate. To quantify the clubbed advantages and limitations of both processes, these were studied individually and in tandem. A number of samples were deposited at different process parameters like power, scan speed, powder feed rate. They were subjected to tensile test, adhesion-cohesion test, impact test and micro hardness measurement. The results of individual tests showed the comparable mechanical prop- erties with i20% variation. The mixed dendritic-cellular and dendritic-columnar microstructures were respectively observed for LRM and PTA deposits with a distinct inter- face for the case of tandem deposition. The interface strength of tandem deposits was evaluated employing adhesion-cohesion test, and it was found to be (325 i 35) MPa. The study confirmed the viability of LRM and PTA deposition in tandem for hybrid manufacturing.
基金Supported by the National Natural Science Foundation of China (Grant No. 50474053)the High Technology Research and Development Program of China (Grant No. 2007AA04Z142)
文摘A solid/liquid/gas unified model has been developed to investigate the gradient composition formation during the plasma deposition manufacturing(PDM) composite materials process. In this model,an enthalpy porosity model was applied to deal with the melting and solidification of the deposited layer,and a level-set approach was introduced to track the evolution of the free surface of the molten pool and the deposited layer. Moreover,complicated physical phenomena occurring at the liquid/gas interface,including forced convection heat loss,heat emission and plasma heat source,have been incorporated into the governing equations by source terms. In this study,the numerical experiment of nickel base alloy powder deposited on the medium steel substrate by PDM technique was implemented based on the staggered grid and SIMPLEC algorithm. Concentration gradient distribution of the solute material at the composite material interface,fluid flow and temperature distribution in the molten pool and the deposited layer have been investigated in detail.