BACKGROUND Diabetes is a common chronic disease,and its global incidence is on the rise.The disease is directly attributed to insufficient insulin efficacy/secretion,and patients are often accompanied by multiple comp...BACKGROUND Diabetes is a common chronic disease,and its global incidence is on the rise.The disease is directly attributed to insufficient insulin efficacy/secretion,and patients are often accompanied by multiple complications.Diabetic foot is one of the most common complications of diabetes.Diabetic feet have ulcers and infections,which can eventually lead to amputation.Basic nursing care,such as lowering blood pressure and preventing foot skin infections in clinical nursing work,has positive significance for the prevention and control of diabetic feet.AIM To explore the positive significance of one-to-one education in high-risk cases of diabetic foot.METHODS This observation included 98 high-risk cases of diabetic foot in our hospital during the period from August 2017 to October 2019,and these patients were randomly divided into the basic nursing group and the one-to-one education group with 49 patients per group.The basic nursing group only received routine basic nursing,while the one-to-one education group gave patients one-to-one education on the basis of basic nursing.After nursing,the self-care ability and compliance behavior of the two groups were evaluated and compared between these two groups.The knowledge mastery of the patient and the satisfaction of nursing were accounted.RESULTS The assessment results of patients(self-care responsibility,self-care skills,selfconcept and self-care knowledge)were significantly higher in the one-to-one education group than in the basic nursing group.The scores of compliance behaviors(foot bathing,shoes and socks selection,sports health care)in the oneto-one education group were significantly higher than those in the basic nursing group.Patients in the one-to-one education group had a significantly higher level of knowledge mastery and satisfaction of nursing than the basic nursing group.CONCLUSION One-to-one education for high-risk cases of diabetic foot is helpful to improve the cognition and self-care ability of patients with diabetic foot,to ensure that patients follow the doctor’s advice of self-care and to improve their nursing satisfaction.展开更多
LDL-factorization is an efficient way of solving Ax = b for a large symmetric positive definite sparse matrix A. This paper presents a new method that further improves the efficiency of LDL-factorization. It is based ...LDL-factorization is an efficient way of solving Ax = b for a large symmetric positive definite sparse matrix A. This paper presents a new method that further improves the efficiency of LDL-factorization. It is based on the theory of elimination trees for the factorization factor. It breaks the computations involved in LDL-factorization down into two stages: 1) the pattern of nonzero entries of the factor is predicted, and 2) the numerical values of the nonzero entries of the factor are computed. The factor is stored using the form of an elimination tree so as to reduce memory usage and avoid unnecessary numerical operations. The calculation results for some typical numerical examples demonstrate that this method provides a significantly higher calculation efficiency for the one-to-one marketing optimization algorithm.展开更多
Objective:To determine the most common mistakes made during the use of a metered-dose inhaler(MDI),and the effect of the repeated trainings performed with demonstration method by providing one-to-one feedback on these...Objective:To determine the most common mistakes made during the use of a metered-dose inhaler(MDI),and the effect of the repeated trainings performed with demonstration method by providing one-to-one feedback on these mistakes.Methods:This is a quasi-experimental study with a control group.A total of 100 chronic obstructive pulmonary disease(COPD)patients(50 in the control group and 50 in the experimental group)were included in the research.“Patient Information Form(PIF)”(to determine the descriptive characteristics of patients)through the face-to-face interview method,using“MDI Skill Assessment Form”(MDISAF)(it is composed of 10 skill steps about the use of MDI)through observation method was used.Patients in both the groups were asked to use MDI and their abilities regarding use of MDI were assessed.Then in the intervention group,usage of MDI was explained by a nurse via demonstration and placebo MDI.Trainings were repeated on days 1,3,and 5 as from hospitalization of the patient.In the intervention group,three methods were used in this study:“face-to-face training,”“one-to-one,”and“with feedbacks and repeated.”Routine training regarding use of MDI was given by the nurses in the clinic to patients in the control group.The use of an MDI was assessed using MDISAF before training and after the training on the first,third and fifth days of hospitalization.On the seventh day,the last measurement was performed.Percentage,chi square,and mean were used to assess the data.Results:After repetitive training with one-to-one feedback,several differences between the groups in favor of the experimental group were found in 7 of the 10 skill levels of the MDI.There was a significant difference after“training”between the groups in the third,fourth,fifth,sixth,seventh,eighth and ninth MDI steps in posttest measurement(P<0.05).Evaluating the skills of the groups to use MDI from pretest to posttest,it was determined that while the intervention group made less mistakes in steps in which mistakes were made mostly,the control group continued to make mistakes.Conclusions:Inhaler technique intervention with repeated,face to face,and one-to-one feedback trainings can significantly enhance the MDI techniques in COPD patients.The patients in the intervention group made less mistakes during MDI application and their application skills improved.It may be asser ted that the training provided to the intervention group was effective for using the device correctly,while the training provided in the clinic for the control group was inadequate.展开更多
Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only f...Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors.Recently,several post-processing methods have been proposed,each with its own strengths and weaknesses.In this paper,we propose THAPE(Tunable Hybrid Associative Predictive Engine),which combines descriptive and predictive techniques.By leveraging both techniques,our aim is to enhance the quality of analyzing generated rules.This includes removing irrelevant or redundant rules,uncovering interesting and useful rules,exploring hidden association rules that may affect other factors,and providing backtracking ability for a given product.The proposed approach offers a tailored method that suits specific goals for retailers,enabling them to gain a better understanding of customer behavior based on factual transactions in the target market.We applied THAPE to a real dataset as a case study in this paper to demonstrate its effectiveness.Through this application,we successfully mined a concise set of highly interesting and useful association rules.Out of the 11,265 rules generated,we identified 125 rules that are particularly relevant to the business context.These identified rules significantly improve the interpretability and usefulness of association rules for decision-making purposes.展开更多
The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules...The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).展开更多
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti...This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.展开更多
[Objectives]This study was conducted to analyze the medication rules of clinical prescriptions of traditional Chinese medicine decoction pieces for the treatment of novel coronavirus pneumonia(COVID-19)during the epid...[Objectives]This study was conducted to analyze the medication rules of clinical prescriptions of traditional Chinese medicine decoction pieces for the treatment of novel coronavirus pneumonia(COVID-19)during the epidemic in multiple regions based on data mining technology,so as to provide a reference for the treatment of COVID-19 with traditional Chinese medicine.[Methods]The traditional Chinese medicine prescriptions used since the outbreak of COVID-19 in Hubei Province during the fight against the epidemic from February 25,2020 to February 14,2022,the traditional Chinese medicine prescriptions used by Guizhou traditional Chinese medicine expert team aiding Hubei Province,the traditional Chinese medicine prescriptions for rehabilitation and conditioning of patients in Ezhou of Hubei Province after discharge,the traditional Chinese medicine prescriptions for the prevention and treatment of COVID-19 in Guizhou Province,and the traditional Chinese medicine prescriptions for the treatment of COVID-19 collected from the end of 2019 to the present from the Chinese database of CNKI were collected as the data of this study.Excel was used to establish a database and enter it into the TCM inheritance calculation platform V3.5,and the association rules and k-means clustering algorithm were used to analyze the frequency of herbal medicines in prescriptions during the treatment of COVID-19,the frequency of four natures,five flavors,meridian distribution,and drug combinations.[Results]A total of 1859 COVID-19 patients treated with traditional Chinese medicine were included,and the proportion of males was higher than that of females,and middle-aged and elderly people were the most common group.A total of 2170 prescriptions of traditional Chinese medicine were included,involving a total of 383 traditional Chinese medicines.High-frequency medicines included poria,Radix Bupleuri,Radix Scutellariae,Herba Pogostemonis,Fructus Forsythiae,Flos Loniceraeetc.The four natures were mainly concentrated in cold,warm and neutral,and the five flavors were mainly concentrated in bitter,pungent and sweet.The herbal medicines were mainly attributed to the lungs and stomach meridians,and were mainly of heat-clearing,exterior syndrome-relieving and diuresis-promoting and damp-clearing types.A total of 24 high-frequency herbal combinations and 35 association rule were excavated,and 3 types of formulas were obtained by cluster analysis.[Conclusions]The analysis results and medicine combinations obtained in the formulas are consistent with the traditional Chinese medicine treatment theory of COVID-19 caused by wind-heat filth accompanied with damp and toxin.展开更多
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional...Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.展开更多
Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the exis...Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.展开更多
This paper reviewed the literature on medication rule of pulmonary nodules in recent years. It is found that contemporary doctors pay more attention to regulating Qi, clearing heat and detoxifying, eliminating phlegm,...This paper reviewed the literature on medication rule of pulmonary nodules in recent years. It is found that contemporary doctors pay more attention to regulating Qi, clearing heat and detoxifying, eliminating phlegm, dissolving phlegm and dissipating masses. They use mild drugs, cold and warm treatments in parallel, combining the tastes of pungent, bitterness, and sweetness at the same time. The treatment focuses on the five viscera with emphasis on the lung meridian while also considering the spleen and stomach functions as well as soothing liver stagnation. This information aims to provide some reference for clinical treatment of pulmonary nodules.展开更多
To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on be...To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on belief rule structure is proposed.By defining the continuous probabilistic hesitation fuzzy linguistic term sets(CPHFLTS)and establishing CPHFLTS distance measure,the belief rule base of the relationship between feature space and category space is constructed through information integration,and the evidence reasoning of the input samples is carried out.The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition.Compared with the other methods,the proposed method has a higher correct recognition rate under different noise levels.展开更多
Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way ...Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way semi-concept lattices have three-way operators with weaker constraints,which can generate more concepts.In this article,the problem of rule acquisition for three-way semi-concept lattices is discussed in general.The authors construct the finer relation of three-way semi-concept lattices,and propose a method of rule acquisition for three-way semi-concept lattices.The authors also discuss the set of decision rules and the relationships of decision rules among object-induced three-way semi-concept lattices,object-induced three-way concept lattices,classical concept lattices and semi-concept lattices.Finally,examples are provided to illustrate the validity of our conclusions.展开更多
Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ...Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.展开更多
The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Tra...The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.展开更多
Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the intro...Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features.展开更多
This article presents an innovative approach to automatic rule discovery for data transformation tasks leveraging XGBoost,a machine learning algorithm renowned for its efficiency and performance.The framework proposed...This article presents an innovative approach to automatic rule discovery for data transformation tasks leveraging XGBoost,a machine learning algorithm renowned for its efficiency and performance.The framework proposed herein utilizes the fusion of diversified feature formats,specifically,metadata,textual,and pattern features.The goal is to enhance the system’s ability to discern and generalize transformation rules fromsource to destination formats in varied contexts.Firstly,the article delves into the methodology for extracting these distinct features from raw data and the pre-processing steps undertaken to prepare the data for the model.Subsequent sections expound on the mechanism of feature optimization using Recursive Feature Elimination(RFE)with linear regression,aiming to retain the most contributive features and eliminate redundant or less significant ones.The core of the research revolves around the deployment of the XGBoostmodel for training,using the prepared and optimized feature sets.The article presents a detailed overview of the mathematical model and algorithmic steps behind this procedure.Finally,the process of rule discovery(prediction phase)by the trained XGBoost model is explained,underscoring its role in real-time,automated data transformations.By employingmachine learning and particularly,the XGBoost model in the context of Business Rule Engine(BRE)data transformation,the article underscores a paradigm shift towardsmore scalable,efficient,and less human-dependent data transformation systems.This research opens doors for further exploration into automated rule discovery systems and their applications in various sectors.展开更多
The objective principles of shiology are mainly reflected in three fields as food acquisition, eaters' health and shiance order. Most of the objective principles in the field of food acquisition have been revealed...The objective principles of shiology are mainly reflected in three fields as food acquisition, eaters' health and shiance order. Most of the objective principles in the field of food acquisition have been revealed by agronomy and foodstuff science. This research mainly focuses on 10 principles in the field of eaters' health and shiance order and in addition, there are also five lemmas that extend from the above principles. The 10 principles are the core theory of the shiology knowledge system, which play an important role in the objective principles revealed by human beings and constitute one of the basic principles of human civilization. Compared with the scientific principles of mathematics, physics, chemistry and economics, the principles of shiology have three characteristics as popularity, practicability and survivability. The principles of shiology in the field of eaters' health are all around us, and everyone can understand and master them. Using the principles of shiology can improve the healthy life span of 8 billion people. The principles of shiology in the field of shiance order is an important tool of social governance, which can reduce human social conflicts, reduce social involution, improve overall efficiency of social operation, and maintain the sustainable development of human beings.展开更多
A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and opt...A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.展开更多
In enterprise operations,maintaining manual rules for enterprise processes can be expensive,time-consuming,and dependent on specialized domain knowledge in that enterprise domain.Recently,rule-generation has been auto...In enterprise operations,maintaining manual rules for enterprise processes can be expensive,time-consuming,and dependent on specialized domain knowledge in that enterprise domain.Recently,rule-generation has been automated in enterprises,particularly through Machine Learning,to streamline routine tasks.Typically,these machine models are black boxes where the reasons for the decisions are not always transparent,and the end users need to verify the model proposals as a part of the user acceptance testing to trust it.In such scenarios,rules excel over Machine Learning models as the end-users can verify the rules and have more trust.In many scenarios,the truth label changes frequently thus,it becomes difficult for the Machine Learning model to learn till a considerable amount of data has been accumulated,but with rules,the truth can be adapted.This paper presents a novel framework for generating human-understandable rules using the Classification and Regression Tree(CART)decision tree method,which ensures both optimization and user trust in automated decision-making processes.The framework generates comprehensible rules in the form of if condition and then predicts class even in domains where noise is present.The proposed system transforms enterprise operations by automating the production of human-readable rules from structured data,resulting in increased efficiency and transparency.Removing the need for human rule construction saves time and money while guaranteeing that users can readily check and trust the automatic judgments of the system.The remarkable performance metrics of the framework,which achieve 99.85%accuracy and 96.30%precision,further support its efficiency in translating complex data into comprehensible rules,eventually empowering users and enhancing organizational decision-making processes.展开更多
基金Supported by Medical Science and Technology Research Foundation of Guangdong Province,No.A2018461.
文摘BACKGROUND Diabetes is a common chronic disease,and its global incidence is on the rise.The disease is directly attributed to insufficient insulin efficacy/secretion,and patients are often accompanied by multiple complications.Diabetic foot is one of the most common complications of diabetes.Diabetic feet have ulcers and infections,which can eventually lead to amputation.Basic nursing care,such as lowering blood pressure and preventing foot skin infections in clinical nursing work,has positive significance for the prevention and control of diabetic feet.AIM To explore the positive significance of one-to-one education in high-risk cases of diabetic foot.METHODS This observation included 98 high-risk cases of diabetic foot in our hospital during the period from August 2017 to October 2019,and these patients were randomly divided into the basic nursing group and the one-to-one education group with 49 patients per group.The basic nursing group only received routine basic nursing,while the one-to-one education group gave patients one-to-one education on the basis of basic nursing.After nursing,the self-care ability and compliance behavior of the two groups were evaluated and compared between these two groups.The knowledge mastery of the patient and the satisfaction of nursing were accounted.RESULTS The assessment results of patients(self-care responsibility,self-care skills,selfconcept and self-care knowledge)were significantly higher in the one-to-one education group than in the basic nursing group.The scores of compliance behaviors(foot bathing,shoes and socks selection,sports health care)in the oneto-one education group were significantly higher than those in the basic nursing group.Patients in the one-to-one education group had a significantly higher level of knowledge mastery and satisfaction of nursing than the basic nursing group.CONCLUSION One-to-one education for high-risk cases of diabetic foot is helpful to improve the cognition and self-care ability of patients with diabetic foot,to ensure that patients follow the doctor’s advice of self-care and to improve their nursing satisfaction.
基金This work was supported in part by the National Natural Science Foundation of PRC (No.60425310)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,PRC.
文摘LDL-factorization is an efficient way of solving Ax = b for a large symmetric positive definite sparse matrix A. This paper presents a new method that further improves the efficiency of LDL-factorization. It is based on the theory of elimination trees for the factorization factor. It breaks the computations involved in LDL-factorization down into two stages: 1) the pattern of nonzero entries of the factor is predicted, and 2) the numerical values of the nonzero entries of the factor are computed. The factor is stored using the form of an elimination tree so as to reduce memory usage and avoid unnecessary numerical operations. The calculation results for some typical numerical examples demonstrate that this method provides a significantly higher calculation efficiency for the one-to-one marketing optimization algorithm.
文摘Objective:To determine the most common mistakes made during the use of a metered-dose inhaler(MDI),and the effect of the repeated trainings performed with demonstration method by providing one-to-one feedback on these mistakes.Methods:This is a quasi-experimental study with a control group.A total of 100 chronic obstructive pulmonary disease(COPD)patients(50 in the control group and 50 in the experimental group)were included in the research.“Patient Information Form(PIF)”(to determine the descriptive characteristics of patients)through the face-to-face interview method,using“MDI Skill Assessment Form”(MDISAF)(it is composed of 10 skill steps about the use of MDI)through observation method was used.Patients in both the groups were asked to use MDI and their abilities regarding use of MDI were assessed.Then in the intervention group,usage of MDI was explained by a nurse via demonstration and placebo MDI.Trainings were repeated on days 1,3,and 5 as from hospitalization of the patient.In the intervention group,three methods were used in this study:“face-to-face training,”“one-to-one,”and“with feedbacks and repeated.”Routine training regarding use of MDI was given by the nurses in the clinic to patients in the control group.The use of an MDI was assessed using MDISAF before training and after the training on the first,third and fifth days of hospitalization.On the seventh day,the last measurement was performed.Percentage,chi square,and mean were used to assess the data.Results:After repetitive training with one-to-one feedback,several differences between the groups in favor of the experimental group were found in 7 of the 10 skill levels of the MDI.There was a significant difference after“training”between the groups in the third,fourth,fifth,sixth,seventh,eighth and ninth MDI steps in posttest measurement(P<0.05).Evaluating the skills of the groups to use MDI from pretest to posttest,it was determined that while the intervention group made less mistakes in steps in which mistakes were made mostly,the control group continued to make mistakes.Conclusions:Inhaler technique intervention with repeated,face to face,and one-to-one feedback trainings can significantly enhance the MDI techniques in COPD patients.The patients in the intervention group made less mistakes during MDI application and their application skills improved.It may be asser ted that the training provided to the intervention group was effective for using the device correctly,while the training provided in the clinic for the control group was inadequate.
文摘Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors.Recently,several post-processing methods have been proposed,each with its own strengths and weaknesses.In this paper,we propose THAPE(Tunable Hybrid Associative Predictive Engine),which combines descriptive and predictive techniques.By leveraging both techniques,our aim is to enhance the quality of analyzing generated rules.This includes removing irrelevant or redundant rules,uncovering interesting and useful rules,exploring hidden association rules that may affect other factors,and providing backtracking ability for a given product.The proposed approach offers a tailored method that suits specific goals for retailers,enabling them to gain a better understanding of customer behavior based on factual transactions in the target market.We applied THAPE to a real dataset as a case study in this paper to demonstrate its effectiveness.Through this application,we successfully mined a concise set of highly interesting and useful association rules.Out of the 11,265 rules generated,we identified 125 rules that are particularly relevant to the business context.These identified rules significantly improve the interpretability and usefulness of association rules for decision-making purposes.
文摘The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).
文摘This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.
基金Supported by Public Health and Epidemic Prevention and Control Project of Guiyang Bureau of Science and Technology([2022]-4-4-5)Guizhou Provincial Key Discipline of Traditional Chinese Medicine and Ethnic Medicine:Clinical Traditional Chinese Medicine(QZYYZDXK(JS)-2023-04).
文摘[Objectives]This study was conducted to analyze the medication rules of clinical prescriptions of traditional Chinese medicine decoction pieces for the treatment of novel coronavirus pneumonia(COVID-19)during the epidemic in multiple regions based on data mining technology,so as to provide a reference for the treatment of COVID-19 with traditional Chinese medicine.[Methods]The traditional Chinese medicine prescriptions used since the outbreak of COVID-19 in Hubei Province during the fight against the epidemic from February 25,2020 to February 14,2022,the traditional Chinese medicine prescriptions used by Guizhou traditional Chinese medicine expert team aiding Hubei Province,the traditional Chinese medicine prescriptions for rehabilitation and conditioning of patients in Ezhou of Hubei Province after discharge,the traditional Chinese medicine prescriptions for the prevention and treatment of COVID-19 in Guizhou Province,and the traditional Chinese medicine prescriptions for the treatment of COVID-19 collected from the end of 2019 to the present from the Chinese database of CNKI were collected as the data of this study.Excel was used to establish a database and enter it into the TCM inheritance calculation platform V3.5,and the association rules and k-means clustering algorithm were used to analyze the frequency of herbal medicines in prescriptions during the treatment of COVID-19,the frequency of four natures,five flavors,meridian distribution,and drug combinations.[Results]A total of 1859 COVID-19 patients treated with traditional Chinese medicine were included,and the proportion of males was higher than that of females,and middle-aged and elderly people were the most common group.A total of 2170 prescriptions of traditional Chinese medicine were included,involving a total of 383 traditional Chinese medicines.High-frequency medicines included poria,Radix Bupleuri,Radix Scutellariae,Herba Pogostemonis,Fructus Forsythiae,Flos Loniceraeetc.The four natures were mainly concentrated in cold,warm and neutral,and the five flavors were mainly concentrated in bitter,pungent and sweet.The herbal medicines were mainly attributed to the lungs and stomach meridians,and were mainly of heat-clearing,exterior syndrome-relieving and diuresis-promoting and damp-clearing types.A total of 24 high-frequency herbal combinations and 35 association rule were excavated,and 3 types of formulas were obtained by cluster analysis.[Conclusions]The analysis results and medicine combinations obtained in the formulas are consistent with the traditional Chinese medicine treatment theory of COVID-19 caused by wind-heat filth accompanied with damp and toxin.
基金National Natural Science Foundation of China Nos.61962054 and 62372353.
文摘Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.
基金National Natural Science Foundation of China(62073212).
文摘Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.
文摘This paper reviewed the literature on medication rule of pulmonary nodules in recent years. It is found that contemporary doctors pay more attention to regulating Qi, clearing heat and detoxifying, eliminating phlegm, dissolving phlegm and dissipating masses. They use mild drugs, cold and warm treatments in parallel, combining the tastes of pungent, bitterness, and sweetness at the same time. The treatment focuses on the five viscera with emphasis on the lung meridian while also considering the spleen and stomach functions as well as soothing liver stagnation. This information aims to provide some reference for clinical treatment of pulmonary nodules.
基金This work was supported by the Youth Foundation of National Science Foundation of China(62001503)the Special Fund for Taishan Scholar Project(ts 201712072).
文摘To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on belief rule structure is proposed.By defining the continuous probabilistic hesitation fuzzy linguistic term sets(CPHFLTS)and establishing CPHFLTS distance measure,the belief rule base of the relationship between feature space and category space is constructed through information integration,and the evidence reasoning of the input samples is carried out.The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition.Compared with the other methods,the proposed method has a higher correct recognition rate under different noise levels.
基金Central University Basic Research Fund of China,Grant/Award Number:FWNX04Ningxia Natural Science Foundation,Grant/Award Number:2021AAC03203National Natural Science Foundation of China,Grant/Award Number:61662001。
文摘Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way semi-concept lattices have three-way operators with weaker constraints,which can generate more concepts.In this article,the problem of rule acquisition for three-way semi-concept lattices is discussed in general.The authors construct the finer relation of three-way semi-concept lattices,and propose a method of rule acquisition for three-way semi-concept lattices.The authors also discuss the set of decision rules and the relationships of decision rules among object-induced three-way semi-concept lattices,object-induced three-way concept lattices,classical concept lattices and semi-concept lattices.Finally,examples are provided to illustrate the validity of our conclusions.
基金funded by the National Science Foundation of China(62006068)Hebei Natural Science Foundation(A2021402008),Natural Science Foundation of Scientific Research Project of Higher Education in Hebei Province(ZD2020185,QN2020188)333 Talent Supported Project of Hebei Province(C20221026).
文摘Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.
文摘The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.
基金National College Students’Training Programs of Innovation and Entrepreneurship,Grant/Award Number:S202210022060the CACMS Innovation Fund,Grant/Award Number:CI2021A00512the National Nature Science Foundation of China under Grant,Grant/Award Number:62206021。
文摘Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features.
文摘This article presents an innovative approach to automatic rule discovery for data transformation tasks leveraging XGBoost,a machine learning algorithm renowned for its efficiency and performance.The framework proposed herein utilizes the fusion of diversified feature formats,specifically,metadata,textual,and pattern features.The goal is to enhance the system’s ability to discern and generalize transformation rules fromsource to destination formats in varied contexts.Firstly,the article delves into the methodology for extracting these distinct features from raw data and the pre-processing steps undertaken to prepare the data for the model.Subsequent sections expound on the mechanism of feature optimization using Recursive Feature Elimination(RFE)with linear regression,aiming to retain the most contributive features and eliminate redundant or less significant ones.The core of the research revolves around the deployment of the XGBoostmodel for training,using the prepared and optimized feature sets.The article presents a detailed overview of the mathematical model and algorithmic steps behind this procedure.Finally,the process of rule discovery(prediction phase)by the trained XGBoost model is explained,underscoring its role in real-time,automated data transformations.By employingmachine learning and particularly,the XGBoost model in the context of Business Rule Engine(BRE)data transformation,the article underscores a paradigm shift towardsmore scalable,efficient,and less human-dependent data transformation systems.This research opens doors for further exploration into automated rule discovery systems and their applications in various sectors.
文摘The objective principles of shiology are mainly reflected in three fields as food acquisition, eaters' health and shiance order. Most of the objective principles in the field of food acquisition have been revealed by agronomy and foodstuff science. This research mainly focuses on 10 principles in the field of eaters' health and shiance order and in addition, there are also five lemmas that extend from the above principles. The 10 principles are the core theory of the shiology knowledge system, which play an important role in the objective principles revealed by human beings and constitute one of the basic principles of human civilization. Compared with the scientific principles of mathematics, physics, chemistry and economics, the principles of shiology have three characteristics as popularity, practicability and survivability. The principles of shiology in the field of eaters' health are all around us, and everyone can understand and master them. Using the principles of shiology can improve the healthy life span of 8 billion people. The principles of shiology in the field of shiance order is an important tool of social governance, which can reduce human social conflicts, reduce social involution, improve overall efficiency of social operation, and maintain the sustainable development of human beings.
基金supported by the National Natural Science Foundation of China(72471067,72431011,72471238,72231011,62303474,72301286)the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK239909299001-010).
文摘A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.
文摘In enterprise operations,maintaining manual rules for enterprise processes can be expensive,time-consuming,and dependent on specialized domain knowledge in that enterprise domain.Recently,rule-generation has been automated in enterprises,particularly through Machine Learning,to streamline routine tasks.Typically,these machine models are black boxes where the reasons for the decisions are not always transparent,and the end users need to verify the model proposals as a part of the user acceptance testing to trust it.In such scenarios,rules excel over Machine Learning models as the end-users can verify the rules and have more trust.In many scenarios,the truth label changes frequently thus,it becomes difficult for the Machine Learning model to learn till a considerable amount of data has been accumulated,but with rules,the truth can be adapted.This paper presents a novel framework for generating human-understandable rules using the Classification and Regression Tree(CART)decision tree method,which ensures both optimization and user trust in automated decision-making processes.The framework generates comprehensible rules in the form of if condition and then predicts class even in domains where noise is present.The proposed system transforms enterprise operations by automating the production of human-readable rules from structured data,resulting in increased efficiency and transparency.Removing the need for human rule construction saves time and money while guaranteeing that users can readily check and trust the automatic judgments of the system.The remarkable performance metrics of the framework,which achieve 99.85%accuracy and 96.30%precision,further support its efficiency in translating complex data into comprehensible rules,eventually empowering users and enhancing organizational decision-making processes.