Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the...Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the world's hydrogen is produced by reforming fossil fuels;however,this hydrogen-making technology is not sustainable or environmentally friendly because ofits high energy consumption and large carbon emissions.Renewables-driven water splitting(2H_(2)0-2H_(2)+0_(2))becomes an extensively studied scheme for sustain-able hydrogen production.Conventional water electrolysis requires an input voltage higher than 1.23 V and forms a gas mixture of H_(2)/O_(2),which results in high electricity consumption,potential safety hazards,and harmful reactive oxygen species.By virtue of the auxiliary redox mediators(RMs)as the robust H^(+)/e^(-)reservoir,decoupled electrolysis splits water at a much lower potential and evolves O_(2)(H_(2)O+RMS_(ox)-O_(2)+H-RMS_(red))and H_(2)(H-RMS_(red)-H_(2)+RMS_(ox))at separate times,rates,and spaces,thus pro-ducing the puretarget hydrogen gas safely.Decoupled electrolysis has accelerated the development ofwater electrolysis technology for H_(2) production.However,itis still lack of a comprehensive and in-depth review in this field based on different types of RMs.This review highlights the basic principles and critical progress of this emerging water electrolysis mode over the past decade.Several representative examples are then dis-played in detail according to the differences in the RMs.The rational choice and design of RMs have also been emphasized.Subsequently,novel applications of decoupled water splitting are briefly discussed,including the manufacture of valuable chemicals,Cl_(2) production,pollutant degradation,and other half-reactions in artificial photosynthesis.Finally,thekey characteristics and disadvantages of each type of mediator are sum-marized in depth.In addition,we present an outlook for future directions in decoupled water splitting.Thus,the flexibility in the design of mediators provides huge space for improving this electrochemical technology.@2024 Science Press and Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by ELSEVIER B.V.and Science Press.All rights reserved.展开更多
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte...A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.展开更多
For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a...For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.展开更多
On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent grow...On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent growth stages have consistency as well as differences, providing references for optimization of irrigation water. Meanwhile, the research analyzed the deficiency of optimization on irrigation water for crops just by Jensen model.展开更多
Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three...Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.展开更多
The research explored variation coefficient of grains and analyzed the fluctuations of grains in Hubei in the 1990s in order to investigate quantitative cor- relation between grain production and water-related disaste...The research explored variation coefficient of grains and analyzed the fluctuations of grains in Hubei in the 1990s in order to investigate quantitative cor- relation between grain production and water-related disaster. The conclusion is that the effective irrigated area and growing structure are major factors influencing grain production capacity, whose grey relational degrees were 0.91 and 0.85 with grain production, respectively. These indicated that water-related disasters have significant effects on grain yield in Hubei Province.展开更多
This study was carried out to unravel the mechanism of reductions in production performances in high stocking density geese flocks during summer months in "geese-fish" production system. Experiment 1 observed the wa...This study was carried out to unravel the mechanism of reductions in production performances in high stocking density geese flocks during summer months in "geese-fish" production system. Experiment 1 observed the water bacterial growth, lipopolysaccharde concentrations in water and geese blood, and geese reproductive performances from summer to winter, in two flocks with varying on water stocking densities. Results showed that counts of total bacteria, Escherichia coli and Salmonella in water, as well as water and geese plasma LPS concentrations, exhibited a tendency decreasing from the highest levels in summer, to intermediate levels in autumn, and to the lowest values in winter. Such seasonal decreases in bacteria and LPS concentrations were associated with similar seasonal decreases in embryo mortality during incubation. In addition, embryos dead or showing development retardation by day 25 of incubation contained copious LPS in allantoic fluid, in contrast to the negligible amount in normal developing embryos. Raising on water stocking density elevated bacteria counts, LPS concentrations in water and geese plasma, and decreased egg fertility but increased embryo mortality during incubation. In experiment 2, exogenous LPS treatment to the geese depressed egg laying, reduced egg hatchability, caused sickness behavior in the goslings hatched. In experiment 3, exogenous LPS directly administered to day 8 and 18 embryos during incubation dose dependently increased mortality and decreased hatchability, and caused sickness behavior in the goslings hatched. It is concluded that the raising on water geese stocking density stimulates pathogenic bacteria growth in water, which via LPS contamination impaires embryo development in incubation and therefore reduces geese reproductive performance and gosling quality during the hot summer months.展开更多
The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Wat...The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Water Simulation Model (CWSM) is used to analyze three alternative climate scenarios (A1B, A2 and B2). The results show that the impacts of climate change on water supply and demand balance differ largely among alternative scenarios. While significant impacts of climate change on water balance will occur under the A1B scenario, the impacts of climate change under the A2 and B2 scenarios will be marginal. Under the A1B scenario, the water shortage in the river basins located in the northern China will become more serious, particularly in Liaohe and Haihe river basins, but the other river basins in the southern China will improve their water balance situations. Despite larger impacts of climate change on water balance in the northern China, its impacts on total crops' production will be moderate if farmers would be able to reallocate water among crops and adjust irrigated and rainfed land. The paper concludes with some policy implications.展开更多
As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and p...As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and photovoltaic power.Hydrogen production from water electrolysis is a good option to make full use of the surplus renewable energy.Among various technologies for producing hydrogen,water electrolysis using electricity from renewable power sources shows greatpromise.To investigate the prospects of water electrolysis for hydrogen production,this review compares different water electrolysis processes,i.e.,alkaline water electrolysis,proton exchange membrane water electrolysis,solid oxide water electrolysis,and alkaline anion exchange membrane water electrolysis.The ion transfer mechanisms,operating characteristics,energy consumption,and industrial products of different water electrolysis apparatus are introduced in this review.Prospects for new water electrolysis technologies are discussed.展开更多
Relationships between carbon (C) production and nitrogen (N) mineralization were investigated in two alpine wetland soils of the Tibetan Plateau using laboratory incubation under different temperatures (5, 15, 25, and...Relationships between carbon (C) production and nitrogen (N) mineralization were investigated in two alpine wetland soils of the Tibetan Plateau using laboratory incubation under different temperatures (5, 15, 25, and 35 ℃) and water saturation (noninundation and inundation). A significant positive relationship was found between CO2 production and N mineralization under increasing temperatures from 5 to 35 ℃ with the same water saturation condition in the marsh soil (r2 > 0.49, P < 0.0001) and the peat soil (r2 > 0.38, P < 0.002), and a negative relationship with water saturation increasing at the same temperature, especially 25 and 35 ℃, in the marsh soil (r2 > 0.70, P < 0.009) and the peat soil (r2 > 0.61, P < 0.013). In conclusion, temperatures and water saturation could regulate the relationship between CO2 production and net N mineralization in the Tibetan alpine marsh and peat soils.展开更多
The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in...The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.展开更多
Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to o...Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water.展开更多
Hydrogen production via solar water splitting is regarded as one of the most promising ways to utilize solar energy and has attracted more and more attention. Great progress has been made on photocatalytic water split...Hydrogen production via solar water splitting is regarded as one of the most promising ways to utilize solar energy and has attracted more and more attention. Great progress has been made on photocatalytic water splitting for hydrogen production in the past few years. This review summarizesthe very recent progress (mainly in the last 2–3 years) on three major types of solar hydrogenproduction systems: particulate photocatalysis (PC) systems, photoelectrochemical (PEC) systems,and photovoltaic‐photoelectrochemical (PV‐PEC) hybrid systems. The solar‐to‐hydrogen (STH)conversion efficiency of PC systems has recently exceeded 1.0% using a SrTiO3:La,Rh/Au/BiVO4:Mophotocatalyst, 2.5% for PEC water splitting on a tantalum nitride photoanode, and reached 22.4%for PV‐PEC water splitting using a multi‐junction GaInP/GaAs/Ge cell and Ni electrode hybrid system.The advantages and disadvantages of these systems for hydrogen production via solar watersplitting, especially for their potential demonstration and application in the future, are briefly describedand discussed. Finally, the challenges and opportunities for solar water splitting solutions are also forecasted.展开更多
Nano ZrO2 and MgO-ZrO2 were prepared by a self-assembly route and were employed as the support for Ni catalysts used in hydrogen production from glycerol reforming in supercritical water (SCW). The reforming experim...Nano ZrO2 and MgO-ZrO2 were prepared by a self-assembly route and were employed as the support for Ni catalysts used in hydrogen production from glycerol reforming in supercritical water (SCW). The reforming experiments were conducted in a tubular fixed-bed flow reactor over a temperature range of 600-800 ℃. The influences of process variables such as temperature, contact time, and water to glycerol ratio on hydrogen yield were investigated and the catalysts were charactered by ICP, BET, XRD and SEM. The results showed that high hydrogen yield was obtained from glycerol by reforming in supercritical water over the Ni/MgO-ZrO2 catalysts in a short contact time. The MgO in the catalyst showed significant promotion effect for hydrogen production likely due to the formation of the alkaline active site. Even when the glycerol feed concentration was up to 45 wt%, glycerol was completely gasified and transfered to the gas products containing hydrogen, carbon dioxide, and methane along with small amounts of carbon monoxide. At a diluted feed concentration of 5 wt%, near theoretical yield of 7 mole of H2/mol of glycerol could be obtained.展开更多
Drip irrigation system can achieve high uniformity. When the system is designed for uniformity coefficient equal or more than 70%, the water application in the field can be expressed as a normal distribution and furth...Drip irrigation system can achieve high uniformity. When the system is designed for uniformity coefficient equal or more than 70%, the water application in the field can be expressed as a normal distribution and further simplified to a linear distribution. This paper will describe the irrigation scheduling parameters, percent of deficit, application efficiency and coefficient of variation by simple mathematical model. Using this effective model and the irrigation application, the total yield affected by the total water application for different uniformity of irrigation application can be determined. More over, this paper uses the cost of water, price of yield, uniformity of the drip irrigation system, crop response to water application and environmental concerns of pollution and contamination to determine the optimal irrigation schedule. A case study shows that the optimal irrigation schedule can achieve the effect of water saving and production increment compared with the conventional irrigation schedule in which the whole field is fully irrigated. Key words drip irrigation - linear cumulative frequency curve - optimal irrigation schedule - water saving - production increment CLC number TV 139.1 Foundation item: Supported by the National Natural Science Foundation of China (59379407)Biography: QIU Yuan-feng (1973-), male, Ph. D, research direction: water saving irrigation theory and techniques.展开更多
Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Fie...Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China.展开更多
Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa...Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.展开更多
Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)...Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)with active metal nanoparticles(AMNs)loading for simultaneously obtaining the water purification and clean energy generation,via a“green”one-step laser scribing technology.The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs,which exhibits high permeated fluxes(over 100 L m^(−2) h^(−1))and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving(0.1 bar).After adsorption saturating,the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis,and restores the adsorption capacity well for the next time membrane separation.Most importantly,the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation.Moreover,the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation,realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation.This“green”precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.He...Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.Here,we demonstrate synthesis of a hydrophilic bi-functional hierarchical architecture by the assembly of B-doped g-C_(3)N_(4)nanoplatelets.Such hierarchical B-doped g-C_(3)N_(4)material enables full utilization of their highly enhanced visible light absorption and photogenerated carrier separation in aqueous medium,leading to an excellent photocatalytic H_(2)O_(2)production rate of 4240.3μM g^(-1)h^(-1),2.84,2.64 and 2.13 times higher than that of the bulk g-C_(3)N_(4),g-C_(3)N_(4)nanoplatelets and bulk B doped g-C_(3)N_(4),respectively.Photoanodes based on these hierarchical architectures can generate an unprecedented photocurrent density of 1.72 m A cm^(-2)at 1.23 V under AM 1.5 G illumination for photoelectrochemical water splitting.This work makes a fundamental improvement towards large-scale exploitation of highly active,hydrophilic and stable metal-free g-C_(3)N_(4)photocatalysts for various practical applications.展开更多
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金the financial support from the National Natural Science Foundation of China(52002146).
文摘Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the world's hydrogen is produced by reforming fossil fuels;however,this hydrogen-making technology is not sustainable or environmentally friendly because ofits high energy consumption and large carbon emissions.Renewables-driven water splitting(2H_(2)0-2H_(2)+0_(2))becomes an extensively studied scheme for sustain-able hydrogen production.Conventional water electrolysis requires an input voltage higher than 1.23 V and forms a gas mixture of H_(2)/O_(2),which results in high electricity consumption,potential safety hazards,and harmful reactive oxygen species.By virtue of the auxiliary redox mediators(RMs)as the robust H^(+)/e^(-)reservoir,decoupled electrolysis splits water at a much lower potential and evolves O_(2)(H_(2)O+RMS_(ox)-O_(2)+H-RMS_(red))and H_(2)(H-RMS_(red)-H_(2)+RMS_(ox))at separate times,rates,and spaces,thus pro-ducing the puretarget hydrogen gas safely.Decoupled electrolysis has accelerated the development ofwater electrolysis technology for H_(2) production.However,itis still lack of a comprehensive and in-depth review in this field based on different types of RMs.This review highlights the basic principles and critical progress of this emerging water electrolysis mode over the past decade.Several representative examples are then dis-played in detail according to the differences in the RMs.The rational choice and design of RMs have also been emphasized.Subsequently,novel applications of decoupled water splitting are briefly discussed,including the manufacture of valuable chemicals,Cl_(2) production,pollutant degradation,and other half-reactions in artificial photosynthesis.Finally,thekey characteristics and disadvantages of each type of mediator are sum-marized in depth.In addition,we present an outlook for future directions in decoupled water splitting.Thus,the flexibility in the design of mediators provides huge space for improving this electrochemical technology.@2024 Science Press and Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by ELSEVIER B.V.and Science Press.All rights reserved.
文摘A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.
基金supported by the National Natural Science Foundation of China(51672081)the Program of Tri-three Talents Project of Hebei Province(China,A202110002)+1 种基金the Young Top Talents Fund Program of Higher Education Institutions of Heibei Province(BJ2020009)the Project of Science and Technology Innovation Team,Tangshan(20130203D)。
文摘For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.
文摘On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent growth stages have consistency as well as differences, providing references for optimization of irrigation water. Meanwhile, the research analyzed the deficiency of optimization on irrigation water for crops just by Jensen model.
基金Supported by Operation and Improvement Program of Climate Monitoring,Warning and Assessment Services in Three Gorges Reservoir AreaNational Key Technology R&D Program (2007BAC29B06)+1 种基金Major State Basic Research Development 973 Program (2006CB400503)National Natural Science Foundation of China (40705031)
文摘Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.
基金Supported by Water Conservancy Science and Technology Project~~
文摘The research explored variation coefficient of grains and analyzed the fluctuations of grains in Hubei in the 1990s in order to investigate quantitative cor- relation between grain production and water-related disaster. The conclusion is that the effective irrigated area and growing structure are major factors influencing grain production capacity, whose grey relational degrees were 0.91 and 0.85 with grain production, respectively. These indicated that water-related disasters have significant effects on grain yield in Hubei Province.
基金supported by the National Natural Science Foundation of China (30871795)the Earmarked Fund for Modern Agro-Industry Technology Research System, China (nycytx-45-13)
文摘This study was carried out to unravel the mechanism of reductions in production performances in high stocking density geese flocks during summer months in "geese-fish" production system. Experiment 1 observed the water bacterial growth, lipopolysaccharde concentrations in water and geese blood, and geese reproductive performances from summer to winter, in two flocks with varying on water stocking densities. Results showed that counts of total bacteria, Escherichia coli and Salmonella in water, as well as water and geese plasma LPS concentrations, exhibited a tendency decreasing from the highest levels in summer, to intermediate levels in autumn, and to the lowest values in winter. Such seasonal decreases in bacteria and LPS concentrations were associated with similar seasonal decreases in embryo mortality during incubation. In addition, embryos dead or showing development retardation by day 25 of incubation contained copious LPS in allantoic fluid, in contrast to the negligible amount in normal developing embryos. Raising on water stocking density elevated bacteria counts, LPS concentrations in water and geese plasma, and decreased egg fertility but increased embryo mortality during incubation. In experiment 2, exogenous LPS treatment to the geese depressed egg laying, reduced egg hatchability, caused sickness behavior in the goslings hatched. In experiment 3, exogenous LPS directly administered to day 8 and 18 embryos during incubation dose dependently increased mortality and decreased hatchability, and caused sickness behavior in the goslings hatched. It is concluded that the raising on water geese stocking density stimulates pathogenic bacteria growth in water, which via LPS contamination impaires embryo development in incubation and therefore reduces geese reproductive performance and gosling quality during the hot summer months.
基金the financial support of Ministry of Science and Technology of China (2012CB955700,2010CB428406)the National Natural Sciences Foundation of China (70925001, 71161140351)+2 种基金the International Development Research Center (107093-001)the Australian Center for International Agriculture (ADP/2010/070)World Bank, and the CAS Strategic Priority Research Program(XDA01020304)
文摘The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Water Simulation Model (CWSM) is used to analyze three alternative climate scenarios (A1B, A2 and B2). The results show that the impacts of climate change on water supply and demand balance differ largely among alternative scenarios. While significant impacts of climate change on water balance will occur under the A1B scenario, the impacts of climate change under the A2 and B2 scenarios will be marginal. Under the A1B scenario, the water shortage in the river basins located in the northern China will become more serious, particularly in Liaohe and Haihe river basins, but the other river basins in the southern China will improve their water balance situations. Despite larger impacts of climate change on water balance in the northern China, its impacts on total crops' production will be moderate if farmers would be able to reallocate water among crops and adjust irrigated and rainfed land. The paper concludes with some policy implications.
基金supported by the Joint Fund of National Natural Science Foundation of China (U1664259)the National Natural Science Foundation of China (91434106)+1 种基金 the State Grid Fund (SGTYHT/15-JS-193)the Beijing municipal science and technology commission project (Z171100002017024)~~
文摘As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and photovoltaic power.Hydrogen production from water electrolysis is a good option to make full use of the surplus renewable energy.Among various technologies for producing hydrogen,water electrolysis using electricity from renewable power sources shows greatpromise.To investigate the prospects of water electrolysis for hydrogen production,this review compares different water electrolysis processes,i.e.,alkaline water electrolysis,proton exchange membrane water electrolysis,solid oxide water electrolysis,and alkaline anion exchange membrane water electrolysis.The ion transfer mechanisms,operating characteristics,energy consumption,and industrial products of different water electrolysis apparatus are introduced in this review.Prospects for new water electrolysis technologies are discussed.
基金supported by the National Key Basic Research Program of China (973 Program) (No.2005CB422005)the National Natural Science Foundation of China (No.30700108)the Forestry Commonweal Program of China(No.200804005).
文摘Relationships between carbon (C) production and nitrogen (N) mineralization were investigated in two alpine wetland soils of the Tibetan Plateau using laboratory incubation under different temperatures (5, 15, 25, and 35 ℃) and water saturation (noninundation and inundation). A significant positive relationship was found between CO2 production and N mineralization under increasing temperatures from 5 to 35 ℃ with the same water saturation condition in the marsh soil (r2 > 0.49, P < 0.0001) and the peat soil (r2 > 0.38, P < 0.002), and a negative relationship with water saturation increasing at the same temperature, especially 25 and 35 ℃, in the marsh soil (r2 > 0.70, P < 0.009) and the peat soil (r2 > 0.61, P < 0.013). In conclusion, temperatures and water saturation could regulate the relationship between CO2 production and net N mineralization in the Tibetan alpine marsh and peat soils.
基金financially supported by the National Natural Science Foundation of China(Grant No.51221961)
文摘The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.
基金Project supported by the National Natural Science Foundation of China (Nos. 50339030 and 90202001).
文摘Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water.
基金supported by the National Basic Research Program of the Ministry of Science and Technology (973 Program, 2014CB239400)the National Natural Science Foundation of China (21501236, 21673230)Youth Innovation Promotion Association of Chinese Academy of Sciences (2016167)~~
文摘Hydrogen production via solar water splitting is regarded as one of the most promising ways to utilize solar energy and has attracted more and more attention. Great progress has been made on photocatalytic water splitting for hydrogen production in the past few years. This review summarizesthe very recent progress (mainly in the last 2–3 years) on three major types of solar hydrogenproduction systems: particulate photocatalysis (PC) systems, photoelectrochemical (PEC) systems,and photovoltaic‐photoelectrochemical (PV‐PEC) hybrid systems. The solar‐to‐hydrogen (STH)conversion efficiency of PC systems has recently exceeded 1.0% using a SrTiO3:La,Rh/Au/BiVO4:Mophotocatalyst, 2.5% for PEC water splitting on a tantalum nitride photoanode, and reached 22.4%for PV‐PEC water splitting using a multi‐junction GaInP/GaAs/Ge cell and Ni electrode hybrid system.The advantages and disadvantages of these systems for hydrogen production via solar watersplitting, especially for their potential demonstration and application in the future, are briefly describedand discussed. Finally, the challenges and opportunities for solar water splitting solutions are also forecasted.
基金supported by the National Natural Science Foundation (21076047 and 21276054)the Natural Science Foundation of Zhongkai University of Agriculture and Engineering (G3100026)
文摘Nano ZrO2 and MgO-ZrO2 were prepared by a self-assembly route and were employed as the support for Ni catalysts used in hydrogen production from glycerol reforming in supercritical water (SCW). The reforming experiments were conducted in a tubular fixed-bed flow reactor over a temperature range of 600-800 ℃. The influences of process variables such as temperature, contact time, and water to glycerol ratio on hydrogen yield were investigated and the catalysts were charactered by ICP, BET, XRD and SEM. The results showed that high hydrogen yield was obtained from glycerol by reforming in supercritical water over the Ni/MgO-ZrO2 catalysts in a short contact time. The MgO in the catalyst showed significant promotion effect for hydrogen production likely due to the formation of the alkaline active site. Even when the glycerol feed concentration was up to 45 wt%, glycerol was completely gasified and transfered to the gas products containing hydrogen, carbon dioxide, and methane along with small amounts of carbon monoxide. At a diluted feed concentration of 5 wt%, near theoretical yield of 7 mole of H2/mol of glycerol could be obtained.
文摘Drip irrigation system can achieve high uniformity. When the system is designed for uniformity coefficient equal or more than 70%, the water application in the field can be expressed as a normal distribution and further simplified to a linear distribution. This paper will describe the irrigation scheduling parameters, percent of deficit, application efficiency and coefficient of variation by simple mathematical model. Using this effective model and the irrigation application, the total yield affected by the total water application for different uniformity of irrigation application can be determined. More over, this paper uses the cost of water, price of yield, uniformity of the drip irrigation system, crop response to water application and environmental concerns of pollution and contamination to determine the optimal irrigation schedule. A case study shows that the optimal irrigation schedule can achieve the effect of water saving and production increment compared with the conventional irrigation schedule in which the whole field is fully irrigated. Key words drip irrigation - linear cumulative frequency curve - optimal irrigation schedule - water saving - production increment CLC number TV 139.1 Foundation item: Supported by the National Natural Science Foundation of China (59379407)Biography: QIU Yuan-feng (1973-), male, Ph. D, research direction: water saving irrigation theory and techniques.
基金supported by the National Natural Science Foundation of China (51621061, 91425302, 51379208)the Research Projects of the Agricultural Public Welfare Industry in China (201503125)the Discipline Innovative Engineering Plan (111 Program, B14002)
文摘Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China.
基金supported by the National Key R&D Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250).
文摘Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.
基金supported by the National Scientific Foundation of China(No.61974050,61704061,51805184,61974049)Key Laboratory of Non-ferrous Metals and New Materials Processing Technology of Ministry of Education/Guangxi Key Laboratory of Optoelectronic Materials and Devices open Fund(20KF-9)+2 种基金the Natural Science Foundation of Hunan Province of China(No.2018TP2003)Excellent youth project of Hunan Provincial Department of Education(No.18B111)State Key Laboratory of Crop Germplasm Innovation and Resource Utilization(No.17KFXN02).The authors thank the technical support from Analytical and Testing Center at Huazhong University of Science and Technology.
文摘Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)with active metal nanoparticles(AMNs)loading for simultaneously obtaining the water purification and clean energy generation,via a“green”one-step laser scribing technology.The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs,which exhibits high permeated fluxes(over 100 L m^(−2) h^(−1))and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving(0.1 bar).After adsorption saturating,the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis,and restores the adsorption capacity well for the next time membrane separation.Most importantly,the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation.Moreover,the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation,realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation.This“green”precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.
基金financially supported by the National Natural Science Foundation of China(U1663225)the Changjiang Scholar Program of Chinese Ministry of Education(IRT15R52)the program of Introducing Talents of Discipline to Universities-Plan 111(B20002)of Ministry of Science and Technology and the Ministry of Education of China and the project “Depollut Air”of Interreg V France-WallonieVlaanderen。
文摘Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.Here,we demonstrate synthesis of a hydrophilic bi-functional hierarchical architecture by the assembly of B-doped g-C_(3)N_(4)nanoplatelets.Such hierarchical B-doped g-C_(3)N_(4)material enables full utilization of their highly enhanced visible light absorption and photogenerated carrier separation in aqueous medium,leading to an excellent photocatalytic H_(2)O_(2)production rate of 4240.3μM g^(-1)h^(-1),2.84,2.64 and 2.13 times higher than that of the bulk g-C_(3)N_(4),g-C_(3)N_(4)nanoplatelets and bulk B doped g-C_(3)N_(4),respectively.Photoanodes based on these hierarchical architectures can generate an unprecedented photocurrent density of 1.72 m A cm^(-2)at 1.23 V under AM 1.5 G illumination for photoelectrochemical water splitting.This work makes a fundamental improvement towards large-scale exploitation of highly active,hydrophilic and stable metal-free g-C_(3)N_(4)photocatalysts for various practical applications.