期刊文献+
共找到7,618篇文章
< 1 2 250 >
每页显示 20 50 100
Sandwich probe temperature sensor based on In_(2)O_(3)-IZO thin film for ultra-high temperatures
1
作者 Xu Fan Bian Tian +7 位作者 Meng Shi Zhongkai Zhang Zhaojun Liu Guoliang Zhou Jiangjiang Liu Le Li Qijing Lin Zhuangde Jiang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期284-297,共14页
High-temperature thin-film thermocouples(TFTCs)have attracted significant attention in the aerospace and steel metallurgy industry.However,previous studies on TFTCs have primarily focused on the two-dimensional planar... High-temperature thin-film thermocouples(TFTCs)have attracted significant attention in the aerospace and steel metallurgy industry.However,previous studies on TFTCs have primarily focused on the two-dimensional planar-type,whose thermal sensitive area has to be perpendicular to the test environment,and therefore affects the thermal fluids pattern or loses accuracy.In order to address this problem,recent studies have developed three-dimensional probe-type TFTCs,which can be set parallel to the test environment.Nevertheless,the probe-type TFTCs are limited by their measurement threshold and poor stability at high temperatures.To address these issues,in this study,we propose a novel probe-type TFTC with a sandwich structure.The sensitive layer is compounded with indium oxide doped zinc oxide and fabricated using screen-printing technology.With the protection of sandwich structure on electrode film,the sensor demonstrates robust high-temperature stability,enabling continuous working at 1200℃ above 5 h with a low drift rate of 2.3℃·h^(−1).This sensor exhibits a high repeatability of 99.3% when measuring a wide range of temperatures,which is beyond the most existing probe-type TFTCs reported in the literature.With its excellent high-temperature performance,this temperature sensor holds immense potentials for enhancing equipment safety in the aerospace engineering and ensuring product quality in the steel metallurgy industry. 展开更多
关键词 probe-type thin-film thermocouples sandwich structure high-temperature stability drift rate temperature sensor
下载PDF
High Sensitivity Submicron Scale Temperature Sensor Based on Perovskite Nanoplatelet Lasers
2
作者 ZHAO Ruofan TAO Jianxun +7 位作者 XI Yuying CHEN Jiangzhao JI Ting WANG Wenyan WEN Rong CUI Yanxia CHEN Junsheng LI Guohui 《发光学报》 EI CAS CSCD 北大核心 2024年第9期1511-1520,共10页
Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonato... Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields. 展开更多
关键词 temperature sensor submicron scale perovskite nanoplatelet
下载PDF
Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200℃ 被引量:7
3
作者 Zhaojun Liu Bian Tian +6 位作者 Zhuangde Jiang Shuimin Li Jiaming Lei Zhongkai Zhang Jiangjiang Liu Peng Shi Qijing Lin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期355-366,共12页
Flexible temperature sensors have been extensively investigated due to their prospect of wide application in various flexible electronic products.However,most of the current flexible temperature sensors only work well... Flexible temperature sensors have been extensively investigated due to their prospect of wide application in various flexible electronic products.However,most of the current flexible temperature sensors only work well in a narrow temperature range,with their application at high or low temperatures still being a big challenge.This work proposes a flexible thermocouple temperature sensor based on aerogel blanket substrate,the temperature-sensitive layer of which uses the screen-printing technology to prepare indium oxide and indium tin oxide.It has good temperature sensitivity,with the test sensitivity reaching 226.7μV℃^(−1).Most importantly,it can work in a wide temperature range,from extremely low temperatures down to liquid nitrogen temperature to high temperatures up to 1200℃,which is difficult to be achieved by other existing flexible temperature sensors.This temperature sensor has huge application potential in biomedicine,aerospace and other fields. 展开更多
关键词 flexible sensor temperature THERMOCOUPLE
下载PDF
Temperature and Salinity Dual-parameter Sensing Based on Forward Brillouin Scattering in 1060-XP SMF
4
作者 LIU Pengkai ZHANG Wujun LU Yuangang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期89-95,共7页
A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial aco... A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering. 展开更多
关键词 forward Brillouin scattering(FBS) optical fiber sensor salinity sensing temperature sensing
下载PDF
High-Performance and Flexible Co-Planar Integrated Microsystem of Carbon-Based All-Solid-State Micro-Supercapacitor and Real-Time Temperature Sensor 被引量:1
5
作者 Dongming Liu Jiaxin Ma +6 位作者 Shuanghao Zheng Wenlong Shao Tianpeng Zhang Siyang Liu Xigao Jian Zhongshuai Wu Fangyuan Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期291-296,共6页
With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are ... With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are prepared by KOH activation using Qamgur precursor,exhibiting three-dimensional(3D)hierarchical porous structure.Benefiting from unobstructed 3D hierarchical porous structure,BDCs provide an excellent specific capacitance of 433 F g^(-1)and prominent cyclability without capacitance degradation after 50000 cycles at 50 A g^(-1).Furthermore,BDC-based planar micro-supercapacitors(MSCs)without metal collector,prepared by mask-assisted coating,exhibit outstanding areal-specific capacitance of 84 mF cm^(-2)and areal energy density of 10.6μWh cm^(-2),exceeding most of the previous carbon-based MSCs.Impressively,the MSCs disclose extraordinary flexibility with capacitance retention of almost 100%under extreme bending state.More importantly,a flexible planar integrated system composed of the MSC and temperature sensor is assembled to efficiently monitor the temperature variation,providing a feasible route for flexible MSC-based functional micro-devices. 展开更多
关键词 3D hierarchical porous carbon biomass-derived carbon integrated microsystem micro-supercapacitors temperature sensor
下载PDF
Design and Implementation of Batch Calibration System for Platinum Resistance Temperature Sensors
6
作者 Hui LIANG Tianwen SONG Yun XIAN 《Meteorological and Environmental Research》 CAS 2023年第5期19-23,共5页
Developing a calibration and collection system of platinum resistance temperature sensor using Python language environment can read the information returned by the serial port and automatically generate an"Temper... Developing a calibration and collection system of platinum resistance temperature sensor using Python language environment can read the information returned by the serial port and automatically generate an"Temperature Sensor Calibration Record Table"excel table with the current date as the file name.It can collect data from 10 platinum resistance temperature sensors at once,achieving automation and improving work efficiency. 展开更多
关键词 PYTHON Air temperature sensor COLLECTION
下载PDF
A Novel Built-in CMOS Temperature Sensor for VLSI Circuits 被引量:3
7
作者 王乃龙 张盛 周润德 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第3期252-256,共5页
A novel temperature sensor is developed and presented especially for the purpose of on-line thermal monitoring of VLSI chips.This sensor requires very small silicon area and low power consumption,and the simulation re... A novel temperature sensor is developed and presented especially for the purpose of on-line thermal monitoring of VLSI chips.This sensor requires very small silicon area and low power consumption,and the simulation results show that its accuracy is in the order of 0.8℃.The proposed sensor can be easily implemented using regular CMOS process technologies,and can be easily integrated to any VLSI circuits to increase their reliability. 展开更多
关键词 temperature sensor thermal testability frequency-output
下载PDF
Low-temperature NO_2 sensors based on polythiophene/WO_3 organic-inorganic hybrids 被引量:2
8
作者 郭先芝 康艳飞 +1 位作者 杨太利 王淑荣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期380-385,共6页
Polythiophene (PTP) was prepared by a chemical oxidative polymerization and nanosized WO3 was prepared by a colloidal chemical method. The organic-inorganic PTP/WO3 hybrids with different mass fractions of PTP were ... Polythiophene (PTP) was prepared by a chemical oxidative polymerization and nanosized WO3 was prepared by a colloidal chemical method. The organic-inorganic PTP/WO3 hybrids with different mass fractions of PTP were obtained by a simple mechanically mixing the prepared PTP and WO3. The as-prepared PTP/WO3 hybrids have a higher thermal stability than the pure PTP. The gas sensing measurements demonstrate that the PTP/WO3 hybrid sensors exhibit higher response for detecting NO2 at low temperature than the pure PTP and WO3 sensor. The sensing mechanism is suggested to be related to the existence of p-n heterojunctions in the PTP/WO3 hybrids. The response of the PTP/WO3 hybrids is markedly influenced by the PTP mass fraction. The 20% PTP/WO3 hybrid shows high response and good selectivity to NO2 at low temperature (〈90℃). Therefore, the PTP/WO3 hybrids can be expected to be potentially used as gas sensor material for detecting NO2 at low temperature. 展开更多
关键词 NO2 sensor polythiophene/WO3 low temperature
下载PDF
Minority-Carrier Exclusion Effect in Thin-Film SOI Temperature Sensor
9
作者 李斌 黎沛涛 +1 位作者 刘百勇 郑学仁 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2003年第5期461-465,共5页
A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature ca... A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature can reach 550℃ even at a low current of 0.1mA.Experimental results support that the minority-carrier exclusion effect can be strong in the conventional resistor structure when the silicon film is sufficiently thin,thus significantly raising the maximum operating temperature.Moreover,since the structure of the device on thin-film SOI wafer is not crucial in controlling the maximum operating temperature,device layout can be varied according to the requirements of applications. 展开更多
关键词 minority-carrier exclusion effect high temperature sensors spreading resistance SOI
下载PDF
Temperature sensor based on polymer thin film optical waveguide
10
作者 王龙德 张彤 +2 位作者 张晓阳 李若舟 汪鲁宁 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期152-157,共6页
Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature ... Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated. 展开更多
关键词 temperature sensor planar optical waveguide guided wave mode thermo-optic effect prism coupling
下载PDF
An investigation on failure behavior of semi-flexible composite mixture at different temperatures 被引量:2
11
作者 Zijia Xiong Minghui Gong +1 位作者 Jinxiang Hong Lei Zhang 《Journal of Road Engineering》 2023年第2期186-202,共17页
Semi-flexible composite mixture(SFCM)is a kind of pavement material formed by pouring cement-based grout material into a porous asphalt mixture with air voids from 20%to 30%.SFCM is widely used for its outstanding ant... Semi-flexible composite mixture(SFCM)is a kind of pavement material formed by pouring cement-based grout material into a porous asphalt mixture with air voids from 20%to 30%.SFCM is widely used for its outstanding anti-rutting performance.Its mechanical performance is complicated due to its heterogeneity and interlocking structure.According to the present study,asphalt deforms at different temperatures,whereas cement-based grout has no similar characteristics.Rare research focuses on the temperature-based performance of SFCM.Therefore,the study was on the thermal performance of SFCM by seven open-graded asphalt mixture skeletons with different porosities and two types of grouts with early strength(ES)and high strength(HS).The test temperatures ranged from 10℃to 60℃.The mechanical investigation was performed using the semi-circular-bending(SCB)and beam bending tests.The strain sensor was used for analyzing the thermal performance of SFCM.The results show that the temperature significantly affected the SFCM's performance.The porosity was selected for three sections based on the trend of fracture energy(Gf)curves at 25℃.The turning points were the porosity values of 20%and 26%.The initiation slope during elastic deformation increases with the porosity increase.This trend was more evident at intermediate temperature.The shrink strain of SFCM was lower than that of the usual asphalt mixture(AC).The thermal stress of the SFCM filled with HS(HS-SFCM)was higher than that of the SFCM filled with ES(ES-SFCM)at 10℃.Moreover,the thermal failure characteristics of SFCM were influenced by porosity. 展开更多
关键词 Semi-flexible composite mixture temperature SCB Strain sensor
下载PDF
Dynamic Calibration of the Cutting Temperature Sensor of NiCr/NiSi Thin-film Thermocouple 被引量:16
12
作者 CUI Yunxian YANG Deshun +2 位作者 JIA Ying ZENG Qiyong SUN Baoyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期73-77,共5页
In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring... In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining. 展开更多
关键词 thin-film thermocouple cutting temperature sensor dynamic calibration one-dimensional unsteady heat conduction response time
下载PDF
A NEW FABRICATION PROCESS FOR A FLEXIBLE SKIN WITH TEMPERATURE SENSOR ARRAY AND ITS APPLICATIONS 被引量:5
13
作者 LEE Gwo-Bin HUANG Fu-Chun +1 位作者 LEE Chia-Yen MIAU Jiun-Jih 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第2期140-145,共6页
This paper reports a novel technique for fabrication of a flexible skin with a temperature sensor array (40×1 sensors). A simplified MEMS technology using platinum resistors as sensing materials, which are sandwi... This paper reports a novel technique for fabrication of a flexible skin with a temperature sensor array (40×1 sensors). A simplified MEMS technology using platinum resistors as sensing materials, which are sandwiched between two polyimide layers as flexible substrates is developed. The two polyimide layers are deposited on top of a thin aluminum layer, which serves as a sacrificial layer such that the flexible skin can be released by metal etching and peeled off easily. The flexible skin with a temperature sensor array has a high mechanical flexibility and can be handily attached on a highly curved surface to detect tiny temperature distribution inside a small area. The sensor array shows a linear output and has a sensitivity of 7.5 mV/°C (prior to amplifiers) at a drive current of 1 mA. To demonstrate its applications, two examples have been demonstrated, including measurement of temperature distribution around a micro heater of a micro PCR (polymerase chain reaction) chip for DNA amplification and detection of separation point for flow over a circular cylinder. The development of the flexible skin with a temperature sensor array may be crucial for measuring temperature distribution on any curved surface in the fields of aerodynamics, space exploration, auto making and biomedical applications etc. 展开更多
关键词 MEMS flexible skin temperature sensors TCR POLYIMIDE
下载PDF
Electroless Nickel Plating and Electroplating on FBG Temperature Sensor 被引量:4
14
作者 SHEN Ren-sheng TENG Rui +6 位作者 LI Xiang-ping ZHANG Jin XIA Dao-cheng FAN Zhao-qi YU Yong-sen ZHANG Yu-shu DU Guo-tong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期635-639,共5页
Metal-coated fiber Bragg grating(FBG)temperature sensors were prepared via electroless nickel(EN)plating and tin electroplating methods on the surface of normal bare FBG.The surface morphologies of the metal-coate... Metal-coated fiber Bragg grating(FBG)temperature sensors were prepared via electroless nickel(EN)plating and tin electroplating methods on the surface of normal bare FBG.The surface morphologies of the metal-coated layers were observed under a metallographic microscope.The effects of pretreatment sequence,pH value of EN plating solution and current density of electroplating on the performance of the metal-coated layers were analyzed.Meanwhile, the Bragg wavelength shift induced by temperature was monitored by an optical spectrum analyzer.Sensitivity of the metal-coated FBG(MFBG)sensor was almost two times that of normal bare FBG sensor.The measuring temperature of the MFBG sensor could be up to 280℃,which was much better than that of conventional FBG sensor. 展开更多
关键词 FBG Metal-coated layer Electroless nickel plating ELECTROPLATING temperature sensor
下载PDF
Room-Temperature Gas Sensors Under Photoactivation:From Metal Oxides to 2D Materials 被引量:12
15
作者 Rahul Kumar Xianghong Liu +1 位作者 Jun Zhang Mahesh Kumar 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期292-328,共37页
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applicatio... Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. 展开更多
关键词 Gas sensor Room temperature PHOTOACTIVATION Metal oxide 2D materials
下载PDF
HIGH TEMPERATURE DISPLACEMENT SENSOR 被引量:12
16
作者 Xu Longxiang Zhang Jinyu Schweitzer Gerhard 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期449-452,共4页
A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at h... A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90-350 mV at 550 ℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2-3 V at 550 ℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550 ℃ in a magnetic bearing system for more than 100 h. 展开更多
关键词 Displacement sensor Eddy current sensor Compensation of temperature High temperature
下载PDF
Optical temperature sensor based on up-conversion fluorescence emission in Yb^(3+):Er^(3+) co-doped ceramics glass 被引量:5
17
作者 徐伟 李成仁 +1 位作者 曹保胜 董斌 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期526-529,共4页
yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30... yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor. 展开更多
关键词 yb^3+:Er^3+ co-doped ceramics glass up-conversion emission optical temperature sensor
下载PDF
Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor 被引量:7
18
作者 Lang-Xi Ou Meng-Yang Liu +2 位作者 Li-Yuan Zhu David Wei Zhang Hong-Liang Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期310-351,共42页
With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been... With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors.However,it is limited by high operating temperature.The current research works are directed towards fabricating high-performance flexible room-temperature(FRT)gas sensors,which are effective in simplifying the structure of MOS-based sensors,reducing power consumption,and expanding the application of portable devices.This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism,performance,flexibility characteristics,and applications.This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors,including pristine MOS,noble metal nanoparticles modified MOS,organic polymers modified MOS,carbon-based materials(carbon nanotubes and graphene derivatives)modified MOS,and two-dimensional transition metal dichalcogenides materials modified MOS.The effect of light-illuminated to improve gas sensing performance is further discussed.Furthermore,the applications and future perspectives of FRT gas sensors are also discussed. 展开更多
关键词 Metal oxide semiconductor Flexible gas sensor Room temperature NANOMATERIALS
下载PDF
MoS2 Nanosheets Sensitized with Quantum Dots for Room-Temperature Gas Sensors 被引量:4
19
作者 Jingyao Liu Zhixiang Hu +9 位作者 Yuzhu Zhang HuaYao Li Naibo Gao Zhilai Tian Licheng Zhou Baohui Zhang Jiang Tang Jianbing Zhang Fei Yi Huan Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第5期20-32,共13页
The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network.While semiconductor gas sensors have ... The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network.While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost,their application is limited by their high operating temperature.Two-dimensional(2D)layered materials,typically molybdenum disulfide(MoS2)nanosheets,are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility.This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots(QDs).The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules.The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature,and the limit of NO2 detection was estimated to be 94 ppb.The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance,offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors. 展开更多
关键词 Gas sensor ROOM temperature MOLYBDENUM DISULFIDE Quantum DOT Nitrogen dioxide
下载PDF
The influence of temperature on flow-induced forces on quartz-crystal-microbalance sensors in a Chinese liquor identification electronic-nose: three-dimensional computational fluid dynamics simulation and analysis 被引量:2
20
作者 Qiang LI Yu GU Huatao WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1301-1312,共12页
An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sens... An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sensitive oscillator that has experienced airflow disturbances under the condition of varying room temperatures due to unstable flow-induced forces on the sensors surfaces. The three-dimensional (3D) nature of the airflow inside the sensor box and the interactions of the airflow on the sensors surfaces at different temperatures are studied by computational fluid dynamics (CFD) tools. Higher simulation accuracy is achieved by optimizing meshes, meshing the computational domain using a fine unstructural tetrahedron mesh. An optimum temperature, 30 ℃, is obtained by analyzing the distributions of velocity streamlines and the static pressure, as well as the flow-induced forces over time, all of which may be used to improve the identification accuracy of the electronic-nose for achieving stable and repeatable signals by removing the influence of temperature. 展开更多
关键词 computational fluid dynamics (CFD) temperature quartz-crystalmicrobalance (QCM) gas sensor ELECTRONIC NOSE IDENTIFICATION accuracy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部