利用最小二乘支持向量机(least square support vector machine,LSSVM)在线辨识时变非线性过程时,设定其核参数较困难,设定的核参数不能适应过程变化而进行自动调节。针对此问题,提出了一种基于核参数分时段调节型LSSVM的在线过程辨识...利用最小二乘支持向量机(least square support vector machine,LSSVM)在线辨识时变非线性过程时,设定其核参数较困难,设定的核参数不能适应过程变化而进行自动调节。针对此问题,提出了一种基于核参数分时段调节型LSSVM的在线过程辨识方法。该方法利用了三个LSSVM,并将整个建模预测时期分为启动阶段和若干个工作周期。初始阶段末和每个工作周期末选定预测误差和最小的LSSVM,作为后续工作周期的工作LSSVM,同时根据启发式规则为另两个LSSVM设定核参数,它们作为后续工作周期的比较LSSVM。该方法设定核参数相对容易,而且核参数具有一定的自动调节能力。数字仿真显示,从统计角度而言,所提方法比传统方法有更好的适应性。展开更多
文摘利用最小二乘支持向量机(least square support vector machine,LSSVM)在线辨识时变非线性过程时,设定其核参数较困难,设定的核参数不能适应过程变化而进行自动调节。针对此问题,提出了一种基于核参数分时段调节型LSSVM的在线过程辨识方法。该方法利用了三个LSSVM,并将整个建模预测时期分为启动阶段和若干个工作周期。初始阶段末和每个工作周期末选定预测误差和最小的LSSVM,作为后续工作周期的工作LSSVM,同时根据启发式规则为另两个LSSVM设定核参数,它们作为后续工作周期的比较LSSVM。该方法设定核参数相对容易,而且核参数具有一定的自动调节能力。数字仿真显示,从统计角度而言,所提方法比传统方法有更好的适应性。