In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting me...The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.展开更多
Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not al...Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.展开更多
Over the past few years,China’s higher education institutions have experienced remarkable growth in online teaching.However,it remains uncertain whether and how the sense of presence perceived by students affects the...Over the past few years,China’s higher education institutions have experienced remarkable growth in online teaching.However,it remains uncertain whether and how the sense of presence perceived by students affects their online learning outcomes when teachers use online teaching media for communication.This sense specifically pertains to the extent to which students perceive themselves as“real persons”and establish connections with others.Therefore,this study constructs a conceptual model elucidating the impact of presence on students’online learning outcomes and empirically examines the mechanism through which three types of presence influence students’online learning.The test results of the structural equation modeling(SEM)indicate that:(a)teaching presence,social presence,and cognitive presence all exhibit significantly positive outcomes on students’online learning outcomes;(b)these three types of presence can also indirectly and positively influence students’online learning outcomes through the mediating effect of flow experience and learning satisfaction;and(c)flow experience and learning satisfaction play a sequential mediating role in the process by which presence impacts students’online learning outcomes.We hope that the relevant research findings may contribute to unveiling the“black box”of the impact of presence on students’online learning outcomes and offer valuable insights for college educators to overcome online teaching constraints and enhance online teaching quality.展开更多
Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f...Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.展开更多
[Objectives]To explore the current situation and effects of online learning from the perspective of students,as well as the learning dynamics,and to explore the online teaching methods.It is possible to put forward re...[Objectives]To explore the current situation and effects of online learning from the perspective of students,as well as the learning dynamics,and to explore the online teaching methods.It is possible to put forward relevant suggestions for the problems presented by online teaching,find effective teaching methods,and explore appropriate online teaching methods.[Methods]The nursing students of the 2020,2021,and 2022 grades of Chengde Nursing Vocational College were selected as the research subjects.A self-made questionnaire survey method was adopted.The questionnaire had 5 items and 44 questions:3 questions on personal information,9 questions on the teacher level,12 ques-tions on the student level,7 questions on the technical level,and 13 questions on online learning satisfaction.[Results]In the process of on-line teaching,the cooperation between family and school can be carried out to give full play to the important role of family supervision in online learning and other education,which is conducive to maintaining the discipline of online courses on the Internet,increasing the online learning effect of students,and avoiding the temptation of the Internet to the greatest extent.In the process,we should increase students'self-control in online learning,help students shape realistic goals,and thus improve the effect of online learning.Technical level:increase information-based teaching,enrich teaching content,and introduce virtual simulation software to simulate clinical operations,so as to increase students’interest and enthusiasm in learning.[Conclusions]This study is expected to provide a certain reference for the smooth and efficient development of online teaching and online learning skills.展开更多
The shift towards online intelligent learning has become the norm in education and is now a fundamental part of modern educational activities.However,this new model can influence students’learning behavior and lead t...The shift towards online intelligent learning has become the norm in education and is now a fundamental part of modern educational activities.However,this new model can influence students’learning behavior and lead to changes in their approach to learning.Based on online intelligent learning,we investigated how the academic self-efficacy of nursing students affects their engagement with learning and explored the role of academic attribution as a mediator.Five hundred fifty-three nursing college students from Hebei and Hunan provinces in China participated in the online questionnaire.The results revealed that effort plays a mediating role in the relationship between academic self-efficacy and learning engagement.展开更多
To evaluate the efficacy of online learning and explore the impact of long-term use of electronic products on facial skin as well as eyes.A cross-sectional survey was conducted to 180 sophomores in Xi′an Jiaotong Uni...To evaluate the efficacy of online learning and explore the impact of long-term use of electronic products on facial skin as well as eyes.A cross-sectional survey was conducted to 180 sophomores in Xi′an Jiaotong University by cluster random sampling from September to October 2021.The questionnaire covering study condition,skin lesion and Ocular Surface Disease Index.χ_(2) test was used to compare the facial skin condition among different groups,and spearman correlation test was used to test the correlation of rank data.During online education,students′learning pressure is reduced,their autonomy is improved,and the learning efficiency is reduced.There were differences in the incidence of facial itching and papules among different groups.Duration of use of electronic products was positively correlated with the facial itching,with an r value of 0.231(P<0.05);the proportion of pigmentation in non-blue light protection groups(12.8%)was higher than that in blue light protection groups(1.7%),the difference was statistically significant(χ_(2)=8.384,P<0.05).The prevalence of dry eye among college students is 66.7%,and the proportion of moderate to severe dry eye is 34.5%.The study autonomy has been improved during online teaching.Long-term use of electronic products and no blue light protection have an impact on facial skin.Students should enhance the knowledge of skin-care and eye-care and develop better habits.展开更多
In the context of internationalization,China-UK Joint Education Programs are receiving increasing attention from universities.Based on the difficulties faced in China-UK Joint Education Program,this paper adopts a que...In the context of internationalization,China-UK Joint Education Programs are receiving increasing attention from universities.Based on the difficulties faced in China-UK Joint Education Program,this paper adopts a questionnaire survey method to study the learning effectiveness of students majoring in digital media technology in the China-UK Joint Education Program at Guangxi University of Finance and Economics,focusing on four aspects:learning materials,learning content,teacher conditions,and student learning outcomes.The research analysis in this paper not only provides strong support for the construction of China-UK Joint Education Program but also offers references for other China-UK Joint Education Programs.展开更多
Objective:To analyze the technical indexes of students’online learning behavior analysis based on Kirkman’s evaluation model,sort out the basic indexes of online learning behavior,and extract scientific and efficien...Objective:To analyze the technical indexes of students’online learning behavior analysis based on Kirkman’s evaluation model,sort out the basic indexes of online learning behavior,and extract scientific and efficient evaluation indexes of online learning effect through statistical analysis.Methods:The online learning behavior data of Physiology of nursing students from 2021-2023 and the first semester of 22 nursing classes(3 and 4)were collected and analyzed.The preset learning behavior indexes were analyzed by multi-dimensional analysis and a correlation analysis was conducted between the indexes and the final examination scores to screen for the dominant important indexes for online learning effect evaluation.Results:The study found that the demand for online learning of nursing students from 2021-2023 increased and the effect was statistically significant.Compared with the stage assessment results,the online learning effect was statistically significant.Conclusion:The main indicators for evaluating and classifying online learning behaviors were summarized.These two indicators can help teachers predict which part of students need learning intervention,optimize the teaching process,and help students improve their learning behavior and academic performance.展开更多
An ontology and metadata for online learning resource repository management is constructed. First, based on the analysis of the use-case diagram, the upper ontology is illustrated which includes resource library ontol...An ontology and metadata for online learning resource repository management is constructed. First, based on the analysis of the use-case diagram, the upper ontology is illustrated which includes resource library ontology and user ontology, and evaluated from its function and implementation; then the corresponding class diagram, resource description framework (RDF) schema and extensible markup language (XML) schema are given. Secondly, the metadata for online learning resource repository management is proposed based on the Dublin Core Metadata Initiative and the IEEE Learning Technologies Standards Committee Learning Object Metadata Working Group. Finally, the inference instance is shown, which proves the validity of ontology and metadata in online learning resource repository management.展开更多
This paper examines the strategies of developing online learning in Chinese universities.Top-down strategies include policy,funding,Senior initiative and task-based management,etc,in which funding generally plays the ...This paper examines the strategies of developing online learning in Chinese universities.Top-down strategies include policy,funding,Senior initiative and task-based management,etc,in which funding generally plays the most important role followed by Senior initiative and task-based management.Bottom-up strategies,especially staff training and contest are often seen as essential to successfully improve online learning.展开更多
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin...Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application.展开更多
Although the World Wide Web is now accessible almost everywhere, on - line instruction is not catching on so rapidly. In large part this is because courses must be assembled manually and cannot be adapted easily to in...Although the World Wide Web is now accessible almost everywhere, on - line instruction is not catching on so rapidly. In large part this is because courses must be assembled manually and cannot be adapted easily to individual student needs. The article points out that with the development of ww\v and computer technology, adaptive learning is necessary and possible for online education. Construction of adaptive program is described and some teaching strategies for adaptive learning is proposed.展开更多
Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used t...Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.展开更多
Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta...Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets.展开更多
Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To ...Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To improve the accuracy of topic-sentiment analysis,a novel model for topic sentiment analysis is proposed that outperforms other state-of-art models.Methodology/approach:We aim at highlighting the identification and visualization of topic sentiment based on learning topic mining and sentiment clustering at various granularitylevels.The proposed method comprised data preprocessing,topic detection,sentiment analysis,and visualization.Findings:The proposed model can effectively perceive students’sentiment tendencies on different topics,which provides powerful practical reference for improving the quality of information services in teaching practice.Research limitations:The model obtains the topic-terminology hybrid matrix and the document-topic hybrid matrix by selecting the real user’s comment information on the basis of LDA topic detection approach,without considering the intensity of students’sentiments and their evolutionary trends.Practical implications:The implication and association rules to visualize the negative sentiment in comments or reviews enable teachers and administrators to access a certain plaint,which can be utilized as a reference for enhancing the accuracy of learning content recommendation,and evaluating the quality of their services.Originality/value:The topic-sentiment analysis model can clarify the hierarchical dependencies between different topics,which lay the foundation for improving the accuracy of teaching content recommendation and optimizing the knowledge coherence of related courses.展开更多
This article is based on research conducted for the European CommissionEducation & Training 2020 working group on digital and online learning(ET2020 WG-DOL) specifically regarding policy challenges, such as thefol...This article is based on research conducted for the European CommissionEducation & Training 2020 working group on digital and online learning(ET2020 WG-DOL) specifically regarding policy challenges, such as thefollowing: 1) Targeted policy guidance on innovative and open learningenvironments under outcome;2) Proposal for a quality assurance modelfor open and innovative learning environments, its impact on specificassessment frameworks and its implication for EU recognition and transparencyinstruments. The article aims to define quality in open, flexible,and online learning, particularly in open education, open educationalresources (OER), and massive open online courses (MOOC). Hence,quality domains, characteristics, and criteria are outlined and discussed,as well as how they contribute to quality and personal learning so thatlearners can orchestrate and take responsibility for their own learningpathways. An additional goal is to identify the major stakeholders directlyinvolved in open online education and to describe their visions, communalities,and conflicts regarding quality in open, flexible, and online learning.The article also focuses on quality in periods of crisis, such as duringthe pandemic in 2020. Finally, the article discusses the rationale and needfor a model of quality in open, flexible, and online learning based on threemajor criteria for quality: excellence, impact, and implementation fromthe learner’s perspective.展开更多
<p align="justify"> <span style="font-family:Verdana;">Amid the Covid-19 widespread, it has been challenging for educational institutions to conduct online classes, facing multiples cha...<p align="justify"> <span style="font-family:Verdana;">Amid the Covid-19 widespread, it has been challenging for educational institutions to conduct online classes, facing multiples challenges. This paper provides an insight into different approaches in facing those challenges which includes conducting a fair online class for students. It is tough for an instructor to keep track of their students at the same time because it is difficult to screen if any of the understudies within the class are not present, mindful, or drowsing. This paper discusses a possible solution, something new that can offer support to instructors seeing things from a more significant point of view. The solution is a facial analysis computer program that can let instructors know which students are attentive and who is not. There’s a green and red square box for face detection, for which Instructors can watch by seeing a green box on those mindful students conjointly, a red box on those who are not mindful at all. This paper finds that the program can automatically give attendance by analyzing data from face detection. It has other features for which the teacher can also know if any student leaves the class early. In this paper, model design, performance analysis, and online class assistant aspects of the program have been discussed.</span> </p>展开更多
With the rapid global proliferation of the Internet and telecommunication networks, online education, one form of distance education is currently becoming the fastest growing trend of domestic and international educat...With the rapid global proliferation of the Internet and telecommunication networks, online education, one form of distance education is currently becoming the fastest growing trend of domestic and international education. A major challenge to designing online learning is the development of appropriate means to facilitate the social environment that is critical for higher order learning in many disciplines. In many online learning designs, the majority of resources are channeled to web interface design and technology, while little or no resources are devoted to facilitating the teaching and learning process, the negotiation of meaning and the validation of knowledge among peers and instructors that depends on a conducive socio-cultural environment and adequate learner support.展开更多
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
基金supported by the National Natural Science Foundation of China (No.U1960202).
文摘The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_0733)Education Reform Foundation of Jiangsu Province(Grant No.2021JSJG364)+1 种基金Key Education Reform Foundation of NJUPT(Grant No.JG00220JX02,JG00218JX03,JG00215JX01,JG00214JX52)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.
基金the project“Research on the Evaluation Mechanism of College Ideological and Political Education:A Perspective on Teacher-Student Development,”funded by Zhejiang Provincial College Ideological and Political Education Research Project.
文摘Over the past few years,China’s higher education institutions have experienced remarkable growth in online teaching.However,it remains uncertain whether and how the sense of presence perceived by students affects their online learning outcomes when teachers use online teaching media for communication.This sense specifically pertains to the extent to which students perceive themselves as“real persons”and establish connections with others.Therefore,this study constructs a conceptual model elucidating the impact of presence on students’online learning outcomes and empirically examines the mechanism through which three types of presence influence students’online learning.The test results of the structural equation modeling(SEM)indicate that:(a)teaching presence,social presence,and cognitive presence all exhibit significantly positive outcomes on students’online learning outcomes;(b)these three types of presence can also indirectly and positively influence students’online learning outcomes through the mediating effect of flow experience and learning satisfaction;and(c)flow experience and learning satisfaction play a sequential mediating role in the process by which presence impacts students’online learning outcomes.We hope that the relevant research findings may contribute to unveiling the“black box”of the impact of presence on students’online learning outcomes and offer valuable insights for college educators to overcome online teaching constraints and enhance online teaching quality.
文摘Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.
基金Supported by General Project"Research on the Current Status,Effects and Satisfaction of Online Learning of Nursing Related Courses Based on Students'Perspectives under the Epidemic Situation"(Y202214).
文摘[Objectives]To explore the current situation and effects of online learning from the perspective of students,as well as the learning dynamics,and to explore the online teaching methods.It is possible to put forward relevant suggestions for the problems presented by online teaching,find effective teaching methods,and explore appropriate online teaching methods.[Methods]The nursing students of the 2020,2021,and 2022 grades of Chengde Nursing Vocational College were selected as the research subjects.A self-made questionnaire survey method was adopted.The questionnaire had 5 items and 44 questions:3 questions on personal information,9 questions on the teacher level,12 ques-tions on the student level,7 questions on the technical level,and 13 questions on online learning satisfaction.[Results]In the process of on-line teaching,the cooperation between family and school can be carried out to give full play to the important role of family supervision in online learning and other education,which is conducive to maintaining the discipline of online courses on the Internet,increasing the online learning effect of students,and avoiding the temptation of the Internet to the greatest extent.In the process,we should increase students'self-control in online learning,help students shape realistic goals,and thus improve the effect of online learning.Technical level:increase information-based teaching,enrich teaching content,and introduce virtual simulation software to simulate clinical operations,so as to increase students’interest and enthusiasm in learning.[Conclusions]This study is expected to provide a certain reference for the smooth and efficient development of online teaching and online learning skills.
基金Research Project on Education and Teaching Reform at Hebei University of Chinese Medicine(22yb-45)Hebei Province Higher Education Teaching Reform Research and Practice Project(2021GJJG278)。
文摘The shift towards online intelligent learning has become the norm in education and is now a fundamental part of modern educational activities.However,this new model can influence students’learning behavior and lead to changes in their approach to learning.Based on online intelligent learning,we investigated how the academic self-efficacy of nursing students affects their engagement with learning and explored the role of academic attribution as a mediator.Five hundred fifty-three nursing college students from Hebei and Hunan provinces in China participated in the online questionnaire.The results revealed that effort plays a mediating role in the relationship between academic self-efficacy and learning engagement.
文摘To evaluate the efficacy of online learning and explore the impact of long-term use of electronic products on facial skin as well as eyes.A cross-sectional survey was conducted to 180 sophomores in Xi′an Jiaotong University by cluster random sampling from September to October 2021.The questionnaire covering study condition,skin lesion and Ocular Surface Disease Index.χ_(2) test was used to compare the facial skin condition among different groups,and spearman correlation test was used to test the correlation of rank data.During online education,students′learning pressure is reduced,their autonomy is improved,and the learning efficiency is reduced.There were differences in the incidence of facial itching and papules among different groups.Duration of use of electronic products was positively correlated with the facial itching,with an r value of 0.231(P<0.05);the proportion of pigmentation in non-blue light protection groups(12.8%)was higher than that in blue light protection groups(1.7%),the difference was statistically significant(χ_(2)=8.384,P<0.05).The prevalence of dry eye among college students is 66.7%,and the proportion of moderate to severe dry eye is 34.5%.The study autonomy has been improved during online teaching.Long-term use of electronic products and no blue light protection have an impact on facial skin.Students should enhance the knowledge of skin-care and eye-care and develop better habits.
基金Guangxi Key Laboratory of Financial Big Data Fund Project(Guikejizi[2021]No.5)Research on the Innovation of Teaching Models for Foreign Professional Courses in China-UK Joint Education Under the Background of Internationalization-Taking Guangxi University of Finance and Economics as an Example(2023XJJG26)Exploration and Practice of Digital Media Technology Talent Training Models in the Context of New Productive Forces(XGK202423)。
文摘In the context of internationalization,China-UK Joint Education Programs are receiving increasing attention from universities.Based on the difficulties faced in China-UK Joint Education Program,this paper adopts a questionnaire survey method to study the learning effectiveness of students majoring in digital media technology in the China-UK Joint Education Program at Guangxi University of Finance and Economics,focusing on four aspects:learning materials,learning content,teacher conditions,and student learning outcomes.The research analysis in this paper not only provides strong support for the construction of China-UK Joint Education Program but also offers references for other China-UK Joint Education Programs.
基金Analysis and Research on Online Learning in Higher Vocational Colleges Based on Kirkpatrick Model-Taking the Course of Physiology as an Example(Project No.:D/2021/03/91)The excellent teaching team of Physiology of Suzhou Vocational College of Health Science and Technology in 2019(Project number:JXTD201912).
文摘Objective:To analyze the technical indexes of students’online learning behavior analysis based on Kirkman’s evaluation model,sort out the basic indexes of online learning behavior,and extract scientific and efficient evaluation indexes of online learning effect through statistical analysis.Methods:The online learning behavior data of Physiology of nursing students from 2021-2023 and the first semester of 22 nursing classes(3 and 4)were collected and analyzed.The preset learning behavior indexes were analyzed by multi-dimensional analysis and a correlation analysis was conducted between the indexes and the final examination scores to screen for the dominant important indexes for online learning effect evaluation.Results:The study found that the demand for online learning of nursing students from 2021-2023 increased and the effect was statistically significant.Compared with the stage assessment results,the online learning effect was statistically significant.Conclusion:The main indicators for evaluating and classifying online learning behaviors were summarized.These two indicators can help teachers predict which part of students need learning intervention,optimize the teaching process,and help students improve their learning behavior and academic performance.
基金The Advanced University Action Plan of the Minis-try of Education of China (2004XD-03).
文摘An ontology and metadata for online learning resource repository management is constructed. First, based on the analysis of the use-case diagram, the upper ontology is illustrated which includes resource library ontology and user ontology, and evaluated from its function and implementation; then the corresponding class diagram, resource description framework (RDF) schema and extensible markup language (XML) schema are given. Secondly, the metadata for online learning resource repository management is proposed based on the Dublin Core Metadata Initiative and the IEEE Learning Technologies Standards Committee Learning Object Metadata Working Group. Finally, the inference instance is shown, which proves the validity of ontology and metadata in online learning resource repository management.
文摘This paper examines the strategies of developing online learning in Chinese universities.Top-down strategies include policy,funding,Senior initiative and task-based management,etc,in which funding generally plays the most important role followed by Senior initiative and task-based management.Bottom-up strategies,especially staff training and contest are often seen as essential to successfully improve online learning.
基金Projects(61603393,61973306)supported in part by the National Natural Science Foundation of ChinaProject(BK20160275)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Projects(2015M581885,2018T110571)supported by the Postdoctoral Science Foundation of ChinaProject(PAL-N201706)supported by the Open Project Foundation of State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University,China
文摘Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application.
文摘Although the World Wide Web is now accessible almost everywhere, on - line instruction is not catching on so rapidly. In large part this is because courses must be assembled manually and cannot be adapted easily to individual student needs. The article points out that with the development of ww\v and computer technology, adaptive learning is necessary and possible for online education. Construction of adaptive program is described and some teaching strategies for adaptive learning is proposed.
文摘Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.
基金the support of the Fundamental Research Funds for the Air Force Engineering University under Grant No.XZJK2019040。
文摘Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets.
基金supported by the Teaching Research Major Projects of Anhui Province(2018jyxm1446)the Natural Scientific Project of Anhui Provincial Department of Education(KJ2019A0371)+1 种基金the Anhui Demonstration Experiment Training Center Project(2018sxzx58)the Demonstration Projects for Massive Open Online Course of Anhui Province(2018mooc278)。
文摘Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To improve the accuracy of topic-sentiment analysis,a novel model for topic sentiment analysis is proposed that outperforms other state-of-art models.Methodology/approach:We aim at highlighting the identification and visualization of topic sentiment based on learning topic mining and sentiment clustering at various granularitylevels.The proposed method comprised data preprocessing,topic detection,sentiment analysis,and visualization.Findings:The proposed model can effectively perceive students’sentiment tendencies on different topics,which provides powerful practical reference for improving the quality of information services in teaching practice.Research limitations:The model obtains the topic-terminology hybrid matrix and the document-topic hybrid matrix by selecting the real user’s comment information on the basis of LDA topic detection approach,without considering the intensity of students’sentiments and their evolutionary trends.Practical implications:The implication and association rules to visualize the negative sentiment in comments or reviews enable teachers and administrators to access a certain plaint,which can be utilized as a reference for enhancing the accuracy of learning content recommendation,and evaluating the quality of their services.Originality/value:The topic-sentiment analysis model can clarify the hierarchical dependencies between different topics,which lay the foundation for improving the accuracy of teaching content recommendation and optimizing the knowledge coherence of related courses.
文摘This article is based on research conducted for the European CommissionEducation & Training 2020 working group on digital and online learning(ET2020 WG-DOL) specifically regarding policy challenges, such as thefollowing: 1) Targeted policy guidance on innovative and open learningenvironments under outcome;2) Proposal for a quality assurance modelfor open and innovative learning environments, its impact on specificassessment frameworks and its implication for EU recognition and transparencyinstruments. The article aims to define quality in open, flexible,and online learning, particularly in open education, open educationalresources (OER), and massive open online courses (MOOC). Hence,quality domains, characteristics, and criteria are outlined and discussed,as well as how they contribute to quality and personal learning so thatlearners can orchestrate and take responsibility for their own learningpathways. An additional goal is to identify the major stakeholders directlyinvolved in open online education and to describe their visions, communalities,and conflicts regarding quality in open, flexible, and online learning.The article also focuses on quality in periods of crisis, such as duringthe pandemic in 2020. Finally, the article discusses the rationale and needfor a model of quality in open, flexible, and online learning based on threemajor criteria for quality: excellence, impact, and implementation fromthe learner’s perspective.
文摘<p align="justify"> <span style="font-family:Verdana;">Amid the Covid-19 widespread, it has been challenging for educational institutions to conduct online classes, facing multiples challenges. This paper provides an insight into different approaches in facing those challenges which includes conducting a fair online class for students. It is tough for an instructor to keep track of their students at the same time because it is difficult to screen if any of the understudies within the class are not present, mindful, or drowsing. This paper discusses a possible solution, something new that can offer support to instructors seeing things from a more significant point of view. The solution is a facial analysis computer program that can let instructors know which students are attentive and who is not. There’s a green and red square box for face detection, for which Instructors can watch by seeing a green box on those mindful students conjointly, a red box on those who are not mindful at all. This paper finds that the program can automatically give attendance by analyzing data from face detection. It has other features for which the teacher can also know if any student leaves the class early. In this paper, model design, performance analysis, and online class assistant aspects of the program have been discussed.</span> </p>
文摘With the rapid global proliferation of the Internet and telecommunication networks, online education, one form of distance education is currently becoming the fastest growing trend of domestic and international education. A major challenge to designing online learning is the development of appropriate means to facilitate the social environment that is critical for higher order learning in many disciplines. In many online learning designs, the majority of resources are channeled to web interface design and technology, while little or no resources are devoted to facilitating the teaching and learning process, the negotiation of meaning and the validation of knowledge among peers and instructors that depends on a conducive socio-cultural environment and adequate learner support.