The South China Sea Summer Monsoon(SCSSM)onset is characterized by an apparent seasonal conversion of circulation and convection.Accordingly,various indices have been introduced to identify the SCSSM onset date.Howeve...The South China Sea Summer Monsoon(SCSSM)onset is characterized by an apparent seasonal conversion of circulation and convection.Accordingly,various indices have been introduced to identify the SCSSM onset date.However,the onset dates as determined by various indices can be very inconsistent.It not only limits the determination of onset dates but also misleads the assessment of prediction skills.In 2021,the onset time as identified by the circulation criteria was 20 May,which is 12 days earlier than that deduced by also considering the convection criteria.The present study mainly ascribes such circulation-convection inconsistency to the activities of tropical cyclones(TCs)modulated by the Madden-Julian Oscillation(MJO).The convection of TC“Yaas”(2021)acted as an upper-level diabatic heat source to the north of the SCS,facilitating the circulation transition.Afterward,TC“Choi-wan”(2021)over the western Pacific aided the westerlies to persist at lower levels while simultaneously suppressing moist convection over the SCS.Accurate predictions using the ECMWF S2S forecast system were obtained only after the MJO formation.The skillful prediction of the MJO during late spring may provide an opportunity to accurately predict the establishment of the SCSSM several weeks in advance.展开更多
Since the South China Sea (SCS) summer monsoon (SCSSM) is pronouncedly featured by abruptly intensified southwesterly and obviously increased precipitation over the SCS,the lower-tropospheric winds and/or convection i...Since the South China Sea (SCS) summer monsoon (SCSSM) is pronouncedly featured by abruptly intensified southwesterly and obviously increased precipitation over the SCS,the lower-tropospheric winds and/or convection intensities are widely used to determine the SCSSM onset.The methods can be used successfully in most of the years but not in 2006.Due to the intrusion of Typhoon Chanchu(0601)that year,the usual method of determining SCSSM onset date by utilizing the SCS regional indices is less capable of pinpointing the real onset date.In order to solve the problem,larger-scale situations have to be taken into account.Zonal and meridional circulations would be better to determine the break-out date of SCSSM in 2006.The result indicates that its onset date is May 16.Moreover,similar onset dates for other years can be obtained using various methods,implying that large-scale zonal and meridional circulations can be used as an alternative method for determining the SCSSM onset date.展开更多
The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset ...The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset is associated with specific atmospheric circulation characteristics. The outbreak of the Asian summer mol)~soon is found to occur first over the southwestern part of the South China Sea (SCS) and the Malay Peninsula region, and the monsoon onset is closely related to intra-seasonal oscillations in the lower atmosphere. These intra-seasonal oscillations consist of two low-frequency vortex pairs, one located to the east of the Philippines and the other over the tropical eastern Indian Ocean. Prior to the Asian summer monsoon onset, a strong low-frequency westerly emerges over the equatorial Indian Ocean and the low-frequency vortex pair develops symmetrically along the equator. The formation and evolution of these low-frequency vortices are important and serve as a good indicator for the Asian summer monsoon onset. The relationship between the northward jumps of the westerly jet over East Asia and the Asian summer monsoon onset over SCS is investigated. It is shown that the northward jump of the westerly jet occurs twice during the transition from winter to summer and these jumps are closely related to the summer monsoon development. The first northward jump (from 25°-28°N to around 30°N) occurs on 8 May on average, about 7 days ahead of the summer monsoon onset over the SCS. It is found that the reverse of meridional temperature gradient in the upper-middle troposphere (500-200 hPa) and the enhancement and northward movement of the subtropical jet in the Southern Hemispheric subtropics are responsible for the first northward jump of the westerly jet.展开更多
In this work, the National Center for Environmental Prediction/ National Center for Atmospheic Research (NCEP/ NCAR) global daily–mean reanalysis data are used to diagnose the features of the local circulation variat...In this work, the National Center for Environmental Prediction/ National Center for Atmospheic Research (NCEP/ NCAR) global daily–mean reanalysis data are used to diagnose the features of the local circulation variation during the South China Sea (SCS) monsoon in 1998. It is found that by taking the appearance of southwest wind in lower layers and east wind in upper layers as the sign of the monsoon onset, the SCS monsoon starts on May 25 in 1998, which is later than that in normal years. The formation of the SCS monsoon is not a simple propagation of southwest monsoon in the north—south direction, but a process in which the southwest wind starts first over the north of the SCS, withdraws southward, and then propagates from south to north again. During this process, both meteorological elements and circulation fields change significantly. The outbreak of the SCS monsoon is the result of the seasonal variation of the height in lower and upper layers. The air rounding the Tibetan Plateau might be one of the dynamic reasons that make the summer monsoon start over the SCS at first. At the different stages of the monsoon, the vertical circulations as well as the lower and the upper layer divergence fields undergo evident temporal and regional changes. The SCS monsoon has the 60–day, 20–30–day and 8–15–day low frequency oscillations (LFOs), and dominant scale changes at the different stages of monsoon. The monsoon onset is related to the superimposition of the amplitudes of LFOs with different scales. Key words SCS monsoon - Circulation variation - Regional climate - LFO Sponsored by the National Key Project of Fundamental Research SCSMEX展开更多
Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different area...Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.展开更多
Background: To examine the differences in prevalence of respiratory distress syndrome, early-onset sepsis and jaundice, between late preterm infants versus term infants in Ecuadorian newborns. Methods: Study design: E...Background: To examine the differences in prevalence of respiratory distress syndrome, early-onset sepsis and jaundice, between late preterm infants versus term infants in Ecuadorian newborns. Methods: Study design: Epidemiological, observational, and cross-sectional, with two cohorts of patients. Settings: IESS Quito Sur Hospital at Quito, Ecuador, from February to April of 2020. Participants: This study included 204 newborns, 102 preterm infants, 102 term infants. Results: There are significant differences between late preterm infants and term infants, with a p-value of 0.000 in the prevalence of early sepsis, 70.59% vs. 35.29%. In respiratory distress syndrome between late and term premature infants, significant differences were observed with a p-value of 0.000, the proportion being 55.58% vs. 24.51% respectively. The prevalence of jaundice is higher in term infants with a p value of 0.002, 72.55%, versus 51.96% in late preterm infants, and the mean value of bilirubins in mg/dL was higher in term infants 14.32 versus 12.33 in late preterm infants;this difference is statistically significant with a p value of 0.004. Admission to the NICU is more frequent in late preterm infants with a p-value of 0.000, being 42.16% for late preterm infants vs. 7.84% in term infants;the mean of the hospital days with p-value 0.005, was higher in late preterm infants 4.97 days vs. 3.55 days for term newborns. Conclusion: Due to the conditions of their immaturity, late preterm infants are 2.86 times more likely to present early sepsis than full-term newborns. It is shown that late preterm infants are 2.69 times more likely to have respiratory distress syndrome compared to term infants, therefore, late preterm infants have a longer hospital stay of 4.97 days versus 3.55 days in term infants. Jaundice and mean bilirubin levels are higher in term infants due to blood group incompatibility and insufficient breastfeeding.展开更多
El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement...El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.展开更多
Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulatio...Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones.展开更多
Objective:To analyze the different clinical features of patients with early-onset(EO-NMOSDs)and late-onset neuromyelitis optica spectrum diseases(LO-NMOSDs).Methods:A total of 51patients with neuromyelitis optica spec...Objective:To analyze the different clinical features of patients with early-onset(EO-NMOSDs)and late-onset neuromyelitis optica spectrum diseases(LO-NMOSDs).Methods:A total of 51patients with neuromyelitis optica spectrum disease who were diagnosed in our hospital for the first time from January 2015 to December 2022 were included in the First Affiliated Hospital of Hainan Medical College and divided into 22 cases in the EO-NMOSDs group and 29 cases in the LO-NMOSDs group according to whether the age of onset was 50 years old.The basic data,Extended Disability Status Scale(EDSS)score,blood and cerebrospinal fluid test indicators of the two groups were statistically analyzed.Results:There were no significant differences in demographic characteristics,clinical features and serum AQP-4 antibody positivity rate between the two groups(all P>0.05),and there were significant differences in triglycerides(TG),low-density lipoprotein(LDL),apolipoprotein A(APOA),apolipoprotein B(APOB)and lipoprotein a(P=0.010,P=0.048,P=0.014,P=0.061,P=0.001,respectively),and cerebrospinal fluid LDH,There were significant differences between microprotein quantification and EDSS score(P=0.018,P=0.034,P=0.025,respectively),and the level of microprotein quantification in cerebrospinal fluid of LO-NMOSDs had a certain correlation with the degree of disability(r=0.52,P<0.03).Conclusion:LO-NMOSDs and EO-NMOSDs group patients have similar demographic characteristics,serum AQP-4 antibody positive rate and clinical features,but compared with EO-NMOSDs,patients in LO-NMOSDs group are prone to abnormal lipid metabolism,higher trace proteins in cerebrospinal fluid and more likely to be disabled,and among LO-NMOSDs,the higher the trace protein in the cerebrospinal fluid,the more severe the disability status of patients.展开更多
Objective:Patients with ductal-dependent pulmonary circulation require alternative bloodflow to provide and maintain adequate oxygenation.Modified Blalock-Taussig Shunt(MBTS)has been the standard for providing such a ...Objective:Patients with ductal-dependent pulmonary circulation require alternative bloodflow to provide and maintain adequate oxygenation.Modified Blalock-Taussig Shunt(MBTS)has been the standard for providing such a result.Currently,less invasive methods such as Arterial Duct(AD)stenting have been performed as alter-natives.This study aims to compare the outcome of AD stenting and MBTS.Method:Systematic research was performed in online databases using the PRISMA protocol.The outcomes measured were 30-day mortality,com-plication,unplanned intervention,oxygen saturation,duration of hospital,and ICU length of stay.Any compara-tive study provided with full text is included.The outcome of each study was analyzed using a trandom effects model with relative risk and mean difference as the effect size.Bias risk assessment was conducted using the New-castle-Ottawa Scale.All analyses were performed using Review Manager 5.4.1.Result:A total of 11 studies with 3154 samples included in this study.There is no significant difference in 30-day mortality between the two groups(p-value=0.10).However,there is significantly less complication(RR 0.53[0.35,0.82];p-value=0.004)and unplanned intervention(RR 0.59[0.38,0.92];p-value=0.02)in the AD stent group.Comparison of the Nakata index showed no significant difference(p-value=0.88).Post-operative oxygen saturation was measured signifi-cantly higher in the AD stenting(MD 1.80[0.85,2.74];p-value=0.0002).However,AD stent group shows sig-nificantly lower long-term oxygen saturation(MD-8.43[-14.38,-2.48];p-value=0.005).Both hospital and ICU length of stay was significantly shorter in the AD stent group(MD-8.30[-11.13,-5.48];p-value<0.00001;MD-5.09[-7.79,-2.38];p-value=0.0002).Conclusion:AD stenting provides comparable outcomes relative to MBTS as it provides less complication and unplanned intervention and higher post-procedural O2 saturation.However,MBTS proved its superiority in maintaining higher long-term oxygen saturation and still became the preferred option to manage complex cases where stenting is either challenging or unsuccessful.展开更多
BACKGROUND:Unsustained return of spontaneous circulation(ROSC)is a critical barrier to survival in cardiac arrest patients.This study examined whether end-tidal carbon dioxide(ETCO_(2))and pulse oximetry photoplethysm...BACKGROUND:Unsustained return of spontaneous circulation(ROSC)is a critical barrier to survival in cardiac arrest patients.This study examined whether end-tidal carbon dioxide(ETCO_(2))and pulse oximetry photoplethysmogram(POP)parameters can be used to identify unsustained ROSC.METHODS:We conducted a multicenter observational prospective cohort study of consecutive patients with cardiac arrest from 2013 to 2014.Patients’general information,ETCO_(2),and POP parameters were collected and statistically analyzed.RESULTS:The included 105 ROSC episodes(from 80 cardiac arrest patients)comprised 51 sustained ROSC episodes and 54 unsustained ROSC episodes.The 24-hour survival rate was significantly higher in the sustained ROSC group than in the unsustained ROSC group(29.2%vs.9.4%,P<0.05).The logistic regression analysis showed that the difference between after and before ROSC in ETCO_(2)(ΔETCO_(2))and the difference between after and before ROCS in area under the curve of POP(ΔAUCp)were independently associated with sustained ROSC(odds ratio[OR]=0.931,95%confi dence interval[95%CI]0.881-0.984,P=0.011 and OR=0.998,95%CI 0.997-0.999,P<0.001).The area under the receiver operating characteristic curve ofΔETCO_(2),ΔAUCp,and the combination of both to predict unsustained ROSC were 0.752(95%CI 0.660-0.844),0.883(95%CI 0.818-0.948),and 0.902(95%CI 0.842-0.962),respectively.CONCLUSION:Patients with unsustained ROSC have a poor prognosis.The combination ofΔETCO_(2) andΔAUCp showed signifi cant predictive value for unsustained ROSC.展开更多
This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy ...This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy transfer coefficient(κ).κ is a parameter commonly used to represent the velocities induced by unresolved eddies.Our findings reveal that a stratification-dependent κ,incorporating spatiotemporal variability,leads to the most robust eddy-induced MOC response,capturing 82% of the reference eddy-resolving simulation.Decomposing the eddy-induced velocity into its vertical variation(VV) and spatial structure(SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term,while the introduced VV term weakens the response.Furthermore,the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies.The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ,attributed to the structure of κ and the vertical variation of the density slope.These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.展开更多
This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average r...This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data.The study employs techniques such as empirical orthogonal function(EOF)decomposition,MannKendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation.The research results show that:the absolute index,relative index,intensity index and sustained dry period index(CDD)in the continuous index appear from southwest to northeast.The spatial distribution characteristics of the central region decrease,while the continuous wet period(CWD)decreases from the central to the east and west.The three indices Rx1day,Rx5day,and CWD mutated in 1978,1975,and 1983 respectively,and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010.In the high-value years of the summer extreme precipitation index,there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia.Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area.Water vapor transported via the east,west,and south routes converges in the northern Shanxi region and encounters cold air from the north.There is a strong upward motion anomaly at 500 hPa in the troposphere,and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region.Conversely,in the low-value years of the summer extreme precipitation index,northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal.There is a downward motion anomaly at 500 hPa,and the northern Shanxi region lacks water vapor.The cold and warm air cannot converge,and both the water vapor conditions and dynamic conditions are poor,which is not conducive to the production of extreme precipitation in northern Shanxi.展开更多
Aim: To explore the application effect of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients. Methods: A total of 98 ...Aim: To explore the application effect of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients. Methods: A total of 98 lung cancer patients admitted to our hospital from April 2020 to November 2021 were selected as the observation objects, and then divided into a control group and an observation group using the random number table method, with 49 cases in each group. The control group received routine admission guidance and active respiratory circulation training, while the observation group was supplemented with external diaphragm pacemaker on the basis of the control group. The intervention effect was evaluated by blood gas indicators, pulmonary function indicators, diaphragm function indicators, sputum comfort degree, and activity tolerance indicators before and after intervention. Results: Before intervention, there were no significant differences in blood gas analysis indicators, pulmonary function indicators, diaphragm function indicators, sputum comfort degree, and activity tolerance indicators between the two groups (P > 0.05). After intervention, the improvement degree of the above indicators in the observation group was higher than that in the control group (P < 0.05). Conclusions: The application of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients is significant, which can effectively improve the pulmonary function, blood gas function, and diaphragm function of lung cancer patients after surgery, and improve the activities of daily living and quality of life of patients.展开更多
Atlantic meridional overturning circulation(AMOC)plays an important role in transporting heat meridionally in the Earth’s climate system and is also a key metrical tool to verify oceanic general circulation models.Tw...Atlantic meridional overturning circulation(AMOC)plays an important role in transporting heat meridionally in the Earth’s climate system and is also a key metrical tool to verify oceanic general circulation models.Two OMIP(Ocean Model Intercomparison Project phase 1 and 2)simulations with LICOM3(version 3 of the LASG/IAP Climate System Ocean Model)developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics(IAP),are compared in this study.Both simulations well reproduce the fundamental characteristics of the AMOC,but the OMIP1 simulation shows a significantly stronger AMOC than the OMIP2 simulation.Because the LICOM3 configurations are identical between these two experiments,any differences between them must be attributed to the surface forcing data.Further analysis suggests that sea surface salinity(SSS)differences should be mainly responsible for the enhanced AMOC in the OMIP1 simulation,but sea surface temperature(SST)also play an unignorable role in modulating AMOC.In the North Atlantic,where deep convection occurs,the SSS in OMIP1 is more saline than that in OMIP1.We find that in the major region of deep convection,the change of SSS has more significant effect on density than the change of SST.As a result,the SSS was more saline than that in OMIP2,leading to stronger deep convection and subsequently intensify the AMOC.We conduct a series of numerical experiments with LICOM3,and the results confirmed that the changes in SSS have more significant effect on the strength of AMOC than the changes in SST.展开更多
This is an erratum to an already published paper named“Establishment of a prediction model for prehospital return of spontaneous circulation in out-ofhospital patients with cardiac arrest”.We found errors in the aff...This is an erratum to an already published paper named“Establishment of a prediction model for prehospital return of spontaneous circulation in out-ofhospital patients with cardiac arrest”.We found errors in the affiliated institution of the authors.We apologize for our unintentional mistake.Please note,these changes do not affect our results.展开更多
Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest v...Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.展开更多
Greece boasts an impressive closed coastline stretching across 13,676 km, making it the largest in the Mediterranean basin and one of the largest in the world. Given the significant human activities that take place in...Greece boasts an impressive closed coastline stretching across 13,676 km, making it the largest in the Mediterranean basin and one of the largest in the world. Given the significant human activities that take place in coastal areas, understanding the behavior of the sea environment becomes crucial. In this study, we delve into the generation and movement of marine currents as well as the retention time and water age within the waters of Pagasitikos Sea inlet, Greece, through numerical simulation of hydrodynamic characteristics. The main examined points of the understudy region are the area of the port of Volos, the Trikeri channel where the ingress and egress of water from the Gulf takes place and the exchange of seawater through circulation of the Pagasitikos Gulf with the North Evian Gulf. In order to evaluate the results, they were compared with real field measurements and with simulation on a laboratory dummy of the same area. The computational simulation was performed with the ELCOM 2.2 numerical modeling tool and the AEM3D latest version and the main factors simulated are the tide, the consequence that Coriolis force, boundary conditions, the topography and bottom geometry of the bay and the actual meteorological conditions of a whole year.展开更多
Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of...Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.展开更多
The Atlantic Meridional Overturning Circulation(AMOC)is a crucial component of the Earth’s climate system due to its fundamental role in heat distribution,carbon and oxygen transport,and the weather.Other climate com...The Atlantic Meridional Overturning Circulation(AMOC)is a crucial component of the Earth’s climate system due to its fundamental role in heat distribution,carbon and oxygen transport,and the weather.Other climate components,such as the atmosphere and sea ice,influence the AMOC.Evaluating the physical mechanisms of those interactions is paramount to increasing knowledge about AMOC’s functioning.In this study,the authors used outputs from the Community Earth System Model version 2 and observational data to investigate changes in theAMOC and the associated physical processes.Two DECK experiments were evaluated:piControl and 1pctCO_(2),with an annual increase of 1%of atmospheric CO_(2).The analysis revealed a significant decrease in the AMOC,associated with changes in mixed layer depth and buoyancy in high latitudes of the North Atlantic,resulting in the shutdown of deep convection and potentially affecting the formation of North Atlantic Deep Water and Antarctic Bottom Water.A vital aspect observed in this study is the association between increased runoff and reduced water evaporation,giving rise to a positive feedback process.Consequently,the rates of freshwater spreading have intensified during this period,which could lead to an accelerated disruption of the AMOC beyond the projections of existing models.展开更多
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 42005011, 41830969)the Basic Scientific Research and Operation Foundation of CAMS (Grant Nos. 2021Z004)supported by the Jiangsu Collaborative Innovation Center for Climate Change
文摘The South China Sea Summer Monsoon(SCSSM)onset is characterized by an apparent seasonal conversion of circulation and convection.Accordingly,various indices have been introduced to identify the SCSSM onset date.However,the onset dates as determined by various indices can be very inconsistent.It not only limits the determination of onset dates but also misleads the assessment of prediction skills.In 2021,the onset time as identified by the circulation criteria was 20 May,which is 12 days earlier than that deduced by also considering the convection criteria.The present study mainly ascribes such circulation-convection inconsistency to the activities of tropical cyclones(TCs)modulated by the Madden-Julian Oscillation(MJO).The convection of TC“Yaas”(2021)acted as an upper-level diabatic heat source to the north of the SCS,facilitating the circulation transition.Afterward,TC“Choi-wan”(2021)over the western Pacific aided the westerlies to persist at lower levels while simultaneously suppressing moist convection over the SCS.Accurate predictions using the ECMWF S2S forecast system were obtained only after the MJO formation.The skillful prediction of the MJO during late spring may provide an opportunity to accurately predict the establishment of the SCSSM several weeks in advance.
基金Major State Basic Research Development Program of China(973 Program)(2010CB950304)
文摘Since the South China Sea (SCS) summer monsoon (SCSSM) is pronouncedly featured by abruptly intensified southwesterly and obviously increased precipitation over the SCS,the lower-tropospheric winds and/or convection intensities are widely used to determine the SCSSM onset.The methods can be used successfully in most of the years but not in 2006.Due to the intrusion of Typhoon Chanchu(0601)that year,the usual method of determining SCSSM onset date by utilizing the SCS regional indices is less capable of pinpointing the real onset date.In order to solve the problem,larger-scale situations have to be taken into account.Zonal and meridional circulations would be better to determine the break-out date of SCSSM in 2006.The result indicates that its onset date is May 16.Moreover,similar onset dates for other years can be obtained using various methods,implying that large-scale zonal and meridional circulations can be used as an alternative method for determining the SCSSM onset date.
基金the National Natural Science Foundation of China (Grant No. 40233033) the Chinese Academy of Sciences (KZCX3-SW-226).
文摘The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset is associated with specific atmospheric circulation characteristics. The outbreak of the Asian summer mol)~soon is found to occur first over the southwestern part of the South China Sea (SCS) and the Malay Peninsula region, and the monsoon onset is closely related to intra-seasonal oscillations in the lower atmosphere. These intra-seasonal oscillations consist of two low-frequency vortex pairs, one located to the east of the Philippines and the other over the tropical eastern Indian Ocean. Prior to the Asian summer monsoon onset, a strong low-frequency westerly emerges over the equatorial Indian Ocean and the low-frequency vortex pair develops symmetrically along the equator. The formation and evolution of these low-frequency vortices are important and serve as a good indicator for the Asian summer monsoon onset. The relationship between the northward jumps of the westerly jet over East Asia and the Asian summer monsoon onset over SCS is investigated. It is shown that the northward jump of the westerly jet occurs twice during the transition from winter to summer and these jumps are closely related to the summer monsoon development. The first northward jump (from 25°-28°N to around 30°N) occurs on 8 May on average, about 7 days ahead of the summer monsoon onset over the SCS. It is found that the reverse of meridional temperature gradient in the upper-middle troposphere (500-200 hPa) and the enhancement and northward movement of the subtropical jet in the Southern Hemispheric subtropics are responsible for the first northward jump of the westerly jet.
基金National Key Project of Fundamental Research SCSMEX.
文摘In this work, the National Center for Environmental Prediction/ National Center for Atmospheic Research (NCEP/ NCAR) global daily–mean reanalysis data are used to diagnose the features of the local circulation variation during the South China Sea (SCS) monsoon in 1998. It is found that by taking the appearance of southwest wind in lower layers and east wind in upper layers as the sign of the monsoon onset, the SCS monsoon starts on May 25 in 1998, which is later than that in normal years. The formation of the SCS monsoon is not a simple propagation of southwest monsoon in the north—south direction, but a process in which the southwest wind starts first over the north of the SCS, withdraws southward, and then propagates from south to north again. During this process, both meteorological elements and circulation fields change significantly. The outbreak of the SCS monsoon is the result of the seasonal variation of the height in lower and upper layers. The air rounding the Tibetan Plateau might be one of the dynamic reasons that make the summer monsoon start over the SCS at first. At the different stages of the monsoon, the vertical circulations as well as the lower and the upper layer divergence fields undergo evident temporal and regional changes. The SCS monsoon has the 60–day, 20–30–day and 8–15–day low frequency oscillations (LFOs), and dominant scale changes at the different stages of monsoon. The monsoon onset is related to the superimposition of the amplitudes of LFOs with different scales. Key words SCS monsoon - Circulation variation - Regional climate - LFO Sponsored by the National Key Project of Fundamental Research SCSMEX
基金supported by a Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030004)the Collaborative Observation and Multisource Real-time Data Fusion and Analysis Technology & Innovation team (Grant No.GRMCTD202103)the Foshan Special Project on Science and Technology in Social Field (Grant No.2120001008761)。
文摘Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.
文摘Background: To examine the differences in prevalence of respiratory distress syndrome, early-onset sepsis and jaundice, between late preterm infants versus term infants in Ecuadorian newborns. Methods: Study design: Epidemiological, observational, and cross-sectional, with two cohorts of patients. Settings: IESS Quito Sur Hospital at Quito, Ecuador, from February to April of 2020. Participants: This study included 204 newborns, 102 preterm infants, 102 term infants. Results: There are significant differences between late preterm infants and term infants, with a p-value of 0.000 in the prevalence of early sepsis, 70.59% vs. 35.29%. In respiratory distress syndrome between late and term premature infants, significant differences were observed with a p-value of 0.000, the proportion being 55.58% vs. 24.51% respectively. The prevalence of jaundice is higher in term infants with a p value of 0.002, 72.55%, versus 51.96% in late preterm infants, and the mean value of bilirubins in mg/dL was higher in term infants 14.32 versus 12.33 in late preterm infants;this difference is statistically significant with a p value of 0.004. Admission to the NICU is more frequent in late preterm infants with a p-value of 0.000, being 42.16% for late preterm infants vs. 7.84% in term infants;the mean of the hospital days with p-value 0.005, was higher in late preterm infants 4.97 days vs. 3.55 days for term newborns. Conclusion: Due to the conditions of their immaturity, late preterm infants are 2.86 times more likely to present early sepsis than full-term newborns. It is shown that late preterm infants are 2.69 times more likely to have respiratory distress syndrome compared to term infants, therefore, late preterm infants have a longer hospital stay of 4.97 days versus 3.55 days in term infants. Jaundice and mean bilirubin levels are higher in term infants due to blood group incompatibility and insufficient breastfeeding.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFA0605703)the National Natural Science Foundation of China(Grant Nos.42176243,41976193 and 41676190)supported by National Natural Science Foundation of China(Grant No.41975079)。
文摘El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant No.52274009)China Postdoctoral Science Foundation(Grant No.2022M723501)Science and Technology Planning Project of Sichuan Province(Grant No.2021YJ0359).
文摘Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones.
基金Hainan Clinical Medicine Center Construction Project(2021)Hainan Provincial Excellent Talent Team(QRCBT202121)Key R&D Plan of Hainan Province(ZDYF2022SHFZ109)。
文摘Objective:To analyze the different clinical features of patients with early-onset(EO-NMOSDs)and late-onset neuromyelitis optica spectrum diseases(LO-NMOSDs).Methods:A total of 51patients with neuromyelitis optica spectrum disease who were diagnosed in our hospital for the first time from January 2015 to December 2022 were included in the First Affiliated Hospital of Hainan Medical College and divided into 22 cases in the EO-NMOSDs group and 29 cases in the LO-NMOSDs group according to whether the age of onset was 50 years old.The basic data,Extended Disability Status Scale(EDSS)score,blood and cerebrospinal fluid test indicators of the two groups were statistically analyzed.Results:There were no significant differences in demographic characteristics,clinical features and serum AQP-4 antibody positivity rate between the two groups(all P>0.05),and there were significant differences in triglycerides(TG),low-density lipoprotein(LDL),apolipoprotein A(APOA),apolipoprotein B(APOB)and lipoprotein a(P=0.010,P=0.048,P=0.014,P=0.061,P=0.001,respectively),and cerebrospinal fluid LDH,There were significant differences between microprotein quantification and EDSS score(P=0.018,P=0.034,P=0.025,respectively),and the level of microprotein quantification in cerebrospinal fluid of LO-NMOSDs had a certain correlation with the degree of disability(r=0.52,P<0.03).Conclusion:LO-NMOSDs and EO-NMOSDs group patients have similar demographic characteristics,serum AQP-4 antibody positive rate and clinical features,but compared with EO-NMOSDs,patients in LO-NMOSDs group are prone to abnormal lipid metabolism,higher trace proteins in cerebrospinal fluid and more likely to be disabled,and among LO-NMOSDs,the higher the trace protein in the cerebrospinal fluid,the more severe the disability status of patients.
文摘Objective:Patients with ductal-dependent pulmonary circulation require alternative bloodflow to provide and maintain adequate oxygenation.Modified Blalock-Taussig Shunt(MBTS)has been the standard for providing such a result.Currently,less invasive methods such as Arterial Duct(AD)stenting have been performed as alter-natives.This study aims to compare the outcome of AD stenting and MBTS.Method:Systematic research was performed in online databases using the PRISMA protocol.The outcomes measured were 30-day mortality,com-plication,unplanned intervention,oxygen saturation,duration of hospital,and ICU length of stay.Any compara-tive study provided with full text is included.The outcome of each study was analyzed using a trandom effects model with relative risk and mean difference as the effect size.Bias risk assessment was conducted using the New-castle-Ottawa Scale.All analyses were performed using Review Manager 5.4.1.Result:A total of 11 studies with 3154 samples included in this study.There is no significant difference in 30-day mortality between the two groups(p-value=0.10).However,there is significantly less complication(RR 0.53[0.35,0.82];p-value=0.004)and unplanned intervention(RR 0.59[0.38,0.92];p-value=0.02)in the AD stent group.Comparison of the Nakata index showed no significant difference(p-value=0.88).Post-operative oxygen saturation was measured signifi-cantly higher in the AD stenting(MD 1.80[0.85,2.74];p-value=0.0002).However,AD stent group shows sig-nificantly lower long-term oxygen saturation(MD-8.43[-14.38,-2.48];p-value=0.005).Both hospital and ICU length of stay was significantly shorter in the AD stent group(MD-8.30[-11.13,-5.48];p-value<0.00001;MD-5.09[-7.79,-2.38];p-value=0.0002).Conclusion:AD stenting provides comparable outcomes relative to MBTS as it provides less complication and unplanned intervention and higher post-procedural O2 saturation.However,MBTS proved its superiority in maintaining higher long-term oxygen saturation and still became the preferred option to manage complex cases where stenting is either challenging or unsuccessful.
基金supported by National Natural Science Foundation of China General Program (82172179)Mathematics Tianyuan Fund (12126604)Central High-level Hospital Clinical Research Project (2022-PUMCH-B-110)
文摘BACKGROUND:Unsustained return of spontaneous circulation(ROSC)is a critical barrier to survival in cardiac arrest patients.This study examined whether end-tidal carbon dioxide(ETCO_(2))and pulse oximetry photoplethysmogram(POP)parameters can be used to identify unsustained ROSC.METHODS:We conducted a multicenter observational prospective cohort study of consecutive patients with cardiac arrest from 2013 to 2014.Patients’general information,ETCO_(2),and POP parameters were collected and statistically analyzed.RESULTS:The included 105 ROSC episodes(from 80 cardiac arrest patients)comprised 51 sustained ROSC episodes and 54 unsustained ROSC episodes.The 24-hour survival rate was significantly higher in the sustained ROSC group than in the unsustained ROSC group(29.2%vs.9.4%,P<0.05).The logistic regression analysis showed that the difference between after and before ROSC in ETCO_(2)(ΔETCO_(2))and the difference between after and before ROCS in area under the curve of POP(ΔAUCp)were independently associated with sustained ROSC(odds ratio[OR]=0.931,95%confi dence interval[95%CI]0.881-0.984,P=0.011 and OR=0.998,95%CI 0.997-0.999,P<0.001).The area under the receiver operating characteristic curve ofΔETCO_(2),ΔAUCp,and the combination of both to predict unsustained ROSC were 0.752(95%CI 0.660-0.844),0.883(95%CI 0.818-0.948),and 0.902(95%CI 0.842-0.962),respectively.CONCLUSION:Patients with unsustained ROSC have a poor prognosis.The combination ofΔETCO_(2) andΔAUCp showed signifi cant predictive value for unsustained ROSC.
基金supported by the National Key R&D Program for Developing Basic Sciences(2022YFC3104802)the National Natural Science Foundation of China(Nos.42306219 and 42106020)+3 种基金the Tai Shan Scholar Pro-gram(Grant No.tstp20231237)Part of computing resources are financially supported by Laoshan Laboratory(No.LSKJ202300301)Dr.Eric P.CHASSIGNET is supported by the CAS President’s International Fellowship Initiative(PIFI)NOAA Climate Program Office MAPP Program(Award NA15OAR4310088).
文摘This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy transfer coefficient(κ).κ is a parameter commonly used to represent the velocities induced by unresolved eddies.Our findings reveal that a stratification-dependent κ,incorporating spatiotemporal variability,leads to the most robust eddy-induced MOC response,capturing 82% of the reference eddy-resolving simulation.Decomposing the eddy-induced velocity into its vertical variation(VV) and spatial structure(SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term,while the introduced VV term weakens the response.Furthermore,the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies.The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ,attributed to the structure of κ and the vertical variation of the density slope.These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.
基金supported by the National Natural Science Foundation of China (41575091)China Meteorological Administration Training Centre scientific research project (Study on impacting factors of regional climate in China)+1 种基金Shanxi Provincial Meteorological Bureau project (SXKMSQH20236329)Heze University Research Fund Program (Poverty Alleviation Project) (XY18FP08)
文摘This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data.The study employs techniques such as empirical orthogonal function(EOF)decomposition,MannKendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation.The research results show that:the absolute index,relative index,intensity index and sustained dry period index(CDD)in the continuous index appear from southwest to northeast.The spatial distribution characteristics of the central region decrease,while the continuous wet period(CWD)decreases from the central to the east and west.The three indices Rx1day,Rx5day,and CWD mutated in 1978,1975,and 1983 respectively,and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010.In the high-value years of the summer extreme precipitation index,there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia.Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area.Water vapor transported via the east,west,and south routes converges in the northern Shanxi region and encounters cold air from the north.There is a strong upward motion anomaly at 500 hPa in the troposphere,and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region.Conversely,in the low-value years of the summer extreme precipitation index,northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal.There is a downward motion anomaly at 500 hPa,and the northern Shanxi region lacks water vapor.The cold and warm air cannot converge,and both the water vapor conditions and dynamic conditions are poor,which is not conducive to the production of extreme precipitation in northern Shanxi.
文摘Aim: To explore the application effect of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients. Methods: A total of 98 lung cancer patients admitted to our hospital from April 2020 to November 2021 were selected as the observation objects, and then divided into a control group and an observation group using the random number table method, with 49 cases in each group. The control group received routine admission guidance and active respiratory circulation training, while the observation group was supplemented with external diaphragm pacemaker on the basis of the control group. The intervention effect was evaluated by blood gas indicators, pulmonary function indicators, diaphragm function indicators, sputum comfort degree, and activity tolerance indicators before and after intervention. Results: Before intervention, there were no significant differences in blood gas analysis indicators, pulmonary function indicators, diaphragm function indicators, sputum comfort degree, and activity tolerance indicators between the two groups (P > 0.05). After intervention, the improvement degree of the above indicators in the observation group was higher than that in the control group (P < 0.05). Conclusions: The application of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients is significant, which can effectively improve the pulmonary function, blood gas function, and diaphragm function of lung cancer patients after surgery, and improve the activities of daily living and quality of life of patients.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060102)the National Natural Science Foundation of China(Nos.91958201,42130608)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42000000)。
文摘Atlantic meridional overturning circulation(AMOC)plays an important role in transporting heat meridionally in the Earth’s climate system and is also a key metrical tool to verify oceanic general circulation models.Two OMIP(Ocean Model Intercomparison Project phase 1 and 2)simulations with LICOM3(version 3 of the LASG/IAP Climate System Ocean Model)developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics(IAP),are compared in this study.Both simulations well reproduce the fundamental characteristics of the AMOC,but the OMIP1 simulation shows a significantly stronger AMOC than the OMIP2 simulation.Because the LICOM3 configurations are identical between these two experiments,any differences between them must be attributed to the surface forcing data.Further analysis suggests that sea surface salinity(SSS)differences should be mainly responsible for the enhanced AMOC in the OMIP1 simulation,but sea surface temperature(SST)also play an unignorable role in modulating AMOC.In the North Atlantic,where deep convection occurs,the SSS in OMIP1 is more saline than that in OMIP1.We find that in the major region of deep convection,the change of SSS has more significant effect on density than the change of SST.As a result,the SSS was more saline than that in OMIP2,leading to stronger deep convection and subsequently intensify the AMOC.We conduct a series of numerical experiments with LICOM3,and the results confirmed that the changes in SSS have more significant effect on the strength of AMOC than the changes in SST.
文摘This is an erratum to an already published paper named“Establishment of a prediction model for prehospital return of spontaneous circulation in out-ofhospital patients with cardiac arrest”.We found errors in the affiliated institution of the authors.We apologize for our unintentional mistake.Please note,these changes do not affect our results.
基金Key Project of Joint Meteorological Fund of the National Natural Science Foundation of China (U2242202)Key Project of the National Natural Science Foundation of China (42030611)+1 种基金Innovative Development Special Project of China Meteorological Administration (CXFZ2023J016)Innovation Team Fund of Sichuan Provincial Meteorological Service (SCQXCX7D-202201)。
文摘Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.
文摘Greece boasts an impressive closed coastline stretching across 13,676 km, making it the largest in the Mediterranean basin and one of the largest in the world. Given the significant human activities that take place in coastal areas, understanding the behavior of the sea environment becomes crucial. In this study, we delve into the generation and movement of marine currents as well as the retention time and water age within the waters of Pagasitikos Sea inlet, Greece, through numerical simulation of hydrodynamic characteristics. The main examined points of the understudy region are the area of the port of Volos, the Trikeri channel where the ingress and egress of water from the Gulf takes place and the exchange of seawater through circulation of the Pagasitikos Gulf with the North Evian Gulf. In order to evaluate the results, they were compared with real field measurements and with simulation on a laboratory dummy of the same area. The computational simulation was performed with the ELCOM 2.2 numerical modeling tool and the AEM3D latest version and the main factors simulated are the tide, the consequence that Coriolis force, boundary conditions, the topography and bottom geometry of the bay and the actual meteorological conditions of a whole year.
基金Under the auspices of National Natural Science Foundation of China(No.52279016,51909106,51879108,42002247,41471160)Natural Science Foundation of Guangdong Province,China(No.2020A1515011038,2020A1515111054)+1 种基金Special Fund for Science and Technology Development in 2016 of Department of Science and Technology of Guangdong Province,China(No.2016A020223007)the Project of Jinan Science and Technology Bureau(No.2021GXRC070)。
文摘Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.
基金This work was possible through the financing of PEC-20480 Project between Royal Dutch Shell(Shell)and the Laboratório de Métodos Computacionais em Engenharia(LAMCE)and through the doctoral fellowship funding by CNPq for Elisa Passos Case number 141819/2016-2the postdoctoral fellowship funding by FAPERJ E 10/2020-Edital Inteligência Artificial Case Number E-26/203.327/2022-Enrollment No.Scholarship 2015.08297.7 for Lívia Sancho.
文摘The Atlantic Meridional Overturning Circulation(AMOC)is a crucial component of the Earth’s climate system due to its fundamental role in heat distribution,carbon and oxygen transport,and the weather.Other climate components,such as the atmosphere and sea ice,influence the AMOC.Evaluating the physical mechanisms of those interactions is paramount to increasing knowledge about AMOC’s functioning.In this study,the authors used outputs from the Community Earth System Model version 2 and observational data to investigate changes in theAMOC and the associated physical processes.Two DECK experiments were evaluated:piControl and 1pctCO_(2),with an annual increase of 1%of atmospheric CO_(2).The analysis revealed a significant decrease in the AMOC,associated with changes in mixed layer depth and buoyancy in high latitudes of the North Atlantic,resulting in the shutdown of deep convection and potentially affecting the formation of North Atlantic Deep Water and Antarctic Bottom Water.A vital aspect observed in this study is the association between increased runoff and reduced water evaporation,giving rise to a positive feedback process.Consequently,the rates of freshwater spreading have intensified during this period,which could lead to an accelerated disruption of the AMOC beyond the projections of existing models.