This paper describes a 3.0V, 10b,40Msample/s analog-to-digital converter (ADC) fabricated in a 0.25μm CMOS technology. Through the sharing an amplifier between two successive pipeline stages, the converter is reali...This paper describes a 3.0V, 10b,40Msample/s analog-to-digital converter (ADC) fabricated in a 0.25μm CMOS technology. Through the sharing an amplifier between two successive pipeline stages, the converter is realized using just four amplifiers with a separate sample-and-hold block. It employs two key techniques: a high bandwidth low-power gain-boosting telescopic amplifiers technique and a low power low offset dynamic comparators technique.The ADC achieves a 8.1 effective number of bits,a maximum differential nonlinearity of a 0.85 least significant bit(LSB), and maximum integral nonlinearity of 2.2LSB for a 0.5MHz input at full sampling rate. It occupies 1.24mm^2 ,which also includes a bandgap and a voltage reference circuit and dissipates only 59mW.展开更多
A high linearity,undersampling 14-bit 357 kSps cyclic analog-to-digital convert(ADC) is designed for a radio frequency identification transceiver system.The passive capacitor error-average(PCEA) technique is adopt...A high linearity,undersampling 14-bit 357 kSps cyclic analog-to-digital convert(ADC) is designed for a radio frequency identification transceiver system.The passive capacitor error-average(PCEA) technique is adopted for high accuracy.An improved PCEA sampling network,capable of eliminating the crosstalk path of two pipelined stages,is employed.Opamp sharing and the removal of the front-end sample and hold amplifier are utilized for low power dissipation and small chip area.An additional digital calibration block is added to compensate for the error due to defective layout design.The presented ADC is fabricated in a 180 nm CMOS process,occupying 0.65×1.6 mm^2. The input of the undersampling ADC achieves 15.5 MHz with more than 90 dB spurious free dynamic range(SFDR), and the peak SFDR is as high as 106.4 dB with 2.431 MHz input.展开更多
文摘This paper describes a 3.0V, 10b,40Msample/s analog-to-digital converter (ADC) fabricated in a 0.25μm CMOS technology. Through the sharing an amplifier between two successive pipeline stages, the converter is realized using just four amplifiers with a separate sample-and-hold block. It employs two key techniques: a high bandwidth low-power gain-boosting telescopic amplifiers technique and a low power low offset dynamic comparators technique.The ADC achieves a 8.1 effective number of bits,a maximum differential nonlinearity of a 0.85 least significant bit(LSB), and maximum integral nonlinearity of 2.2LSB for a 0.5MHz input at full sampling rate. It occupies 1.24mm^2 ,which also includes a bandgap and a voltage reference circuit and dissipates only 59mW.
基金supported by the National High Technology Research and Development Program of China(No.2006AA04A109)
文摘A high linearity,undersampling 14-bit 357 kSps cyclic analog-to-digital convert(ADC) is designed for a radio frequency identification transceiver system.The passive capacitor error-average(PCEA) technique is adopted for high accuracy.An improved PCEA sampling network,capable of eliminating the crosstalk path of two pipelined stages,is employed.Opamp sharing and the removal of the front-end sample and hold amplifier are utilized for low power dissipation and small chip area.An additional digital calibration block is added to compensate for the error due to defective layout design.The presented ADC is fabricated in a 180 nm CMOS process,occupying 0.65×1.6 mm^2. The input of the undersampling ADC achieves 15.5 MHz with more than 90 dB spurious free dynamic range(SFDR), and the peak SFDR is as high as 106.4 dB with 2.431 MHz input.