In the context of banning gated communities, blocks returning to the human-oriented scale become the new normal, and pedestrian system design will be paid more attention in the urban planning field. Oct-Loft Creative ...In the context of banning gated communities, blocks returning to the human-oriented scale become the new normal, and pedestrian system design will be paid more attention in the urban planning field. Oct-Loft Creative Park is a template for open blocks in Shenzhen, with a convenient and humanized pedestrian system. This paper selects the creative park's pedestrian system as the research object, using the environment-behavior theory for analysis. Finally, optimization strategies of pedestrian system will be put forward.展开更多
Epidural analgesia has long been regarded as the gold standard in abdominal surgery. However, concerns regarding risks associated with central neuraxial blockade, catheter placement and the presence of coagulopathy in...Epidural analgesia has long been regarded as the gold standard in abdominal surgery. However, concerns regarding risks associated with central neuraxial blockade, catheter placement and the presence of coagulopathy in patients undergoing liver resection have limited its use. Bilateral erector spinae plane blocks and catheter placement may mimic the effects of epidural analgesia by blocking both somatic and visceral pain while concomitantly avoiding central neuraxial blockade and catheter placement. We describe our experience in using the erector spinae plane block and catheter placement as part of a multimodal analgesia approach in a patient undergoing laparoscopic and another patient undergoing open liver resection. Our findings concur with previous reports which suggest that erector spinae plane blocks may be more efficacious as somatic rather than visceral analgesia. However, we conclude that further studies on factors affecting its efficacy should be conducted in view of the present lack of researched evidence.展开更多
Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney di...Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney dis-ease. Drugs that interact directly with CFTR are there-fore of interest in the treatment of a number of diseasestates. This review focuses on one class of small mol-ecules that interacts directly with CFTR, namely inhibi-tors that act by directly blocking chloride movementthrough the open channel pore. In theory such com-pounds could be of use in the treatment of diarrheaand polycystic kidney disease, however in practice allknown substances acting by this mechanism to inhibitCFTR function lack either the potency or specificity forin vivo use. Nevertheless, this theoretical pharmaco-logical usefulness set the scene for the developmentof more potent, specific CFTR inhibitors. Biophysically,open channel blockers have proven most useful as ex-perimental probes of the structure and function of theCFTR chloride channel pore. Most importantly, the useof these blockers has been fundamental in developing afunctional model of the pore that includes a wide innervestibule that uses positively charged amino acid sidechains to attract both permeant and blocking anionsfrom the cell cytoplasm. CFTR channels are also subjectto this kind of blocking action by endogenous anionspresent in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physio-logical control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR chan-nel structure and function, and of how CFTR activity is controlled by its local environment.展开更多
文摘In the context of banning gated communities, blocks returning to the human-oriented scale become the new normal, and pedestrian system design will be paid more attention in the urban planning field. Oct-Loft Creative Park is a template for open blocks in Shenzhen, with a convenient and humanized pedestrian system. This paper selects the creative park's pedestrian system as the research object, using the environment-behavior theory for analysis. Finally, optimization strategies of pedestrian system will be put forward.
文摘Epidural analgesia has long been regarded as the gold standard in abdominal surgery. However, concerns regarding risks associated with central neuraxial blockade, catheter placement and the presence of coagulopathy in patients undergoing liver resection have limited its use. Bilateral erector spinae plane blocks and catheter placement may mimic the effects of epidural analgesia by blocking both somatic and visceral pain while concomitantly avoiding central neuraxial blockade and catheter placement. We describe our experience in using the erector spinae plane block and catheter placement as part of a multimodal analgesia approach in a patient undergoing laparoscopic and another patient undergoing open liver resection. Our findings concur with previous reports which suggest that erector spinae plane blocks may be more efficacious as somatic rather than visceral analgesia. However, we conclude that further studies on factors affecting its efficacy should be conducted in view of the present lack of researched evidence.
文摘Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney dis-ease. Drugs that interact directly with CFTR are there-fore of interest in the treatment of a number of diseasestates. This review focuses on one class of small mol-ecules that interacts directly with CFTR, namely inhibi-tors that act by directly blocking chloride movementthrough the open channel pore. In theory such com-pounds could be of use in the treatment of diarrheaand polycystic kidney disease, however in practice allknown substances acting by this mechanism to inhibitCFTR function lack either the potency or specificity forin vivo use. Nevertheless, this theoretical pharmaco-logical usefulness set the scene for the developmentof more potent, specific CFTR inhibitors. Biophysically,open channel blockers have proven most useful as ex-perimental probes of the structure and function of theCFTR chloride channel pore. Most importantly, the useof these blockers has been fundamental in developing afunctional model of the pore that includes a wide innervestibule that uses positively charged amino acid sidechains to attract both permeant and blocking anionsfrom the cell cytoplasm. CFTR channels are also subjectto this kind of blocking action by endogenous anionspresent in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physio-logical control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR chan-nel structure and function, and of how CFTR activity is controlled by its local environment.