Through the research on the model of the land reclamation in the refuse dumpof Heidaigou open coal mines,it was concerned that ecology was the theoretical basic forthe land reclamation of open coal mines.According to ...Through the research on the model of the land reclamation in the refuse dumpof Heidaigou open coal mines,it was concerned that ecology was the theoretical basic forthe land reclamation of open coal mines.According to the principle of ecological substitut-ing,the land reclamation can be divided into three stages:water and soil conservation,ecological performance and economic performance.Taking the land reclamation in the re-fuse dump of Heidaigou open coal mines as the practical example,explained the applica-tion of the ecological substituting principle on the land reclamation in the open coal mines.展开更多
According to the evolving principle of the organic and environment, firstly, for the purpose of growing and keeping the ground, some legume species were chosen as pioneer plants to improve the construction of soil and...According to the evolving principle of the organic and environment, firstly, for the purpose of growing and keeping the ground, some legume species were chosen as pioneer plants to improve the construction of soil and increased soil fertility in the light of the land term and soil condition. Along with soil fertility increased, it is necessary to culti-vate some shrubs and arbors which have extra resistance. Gradually it becomes the stereoscopic landscape of planting arbor-shrub-herb plants. So that the evolving of the organic and environment can be enhanced. Taking the land reclamation in the refuse dump of Heidaigou open coal mines as the practical example, explained the application of the organic and environment evolving principle on the land reclamation in the open coal mines.展开更多
In view of the situation of excavation of should carry out simulation studies for the numerical open coal mine for the underground water disaster, we value of the water lowering project and improve the accuracy and th...In view of the situation of excavation of should carry out simulation studies for the numerical open coal mine for the underground water disaster, we value of the water lowering project and improve the accuracy and the level of the water lowering project. On the basis of the hydrological geological conditions of certain open mine digging, a more reasonable seepage numerical model was built according to MODFLOW. It was simulated in advance that the process of the confined water level descending with the time, and combining with the actual observations to test the correctness of the model. The calculation showed that the results coincided well with the results of actual measurement. Based on this, different water lowering numerical simulations were built for the open coal mine digging. It could be simulated and forecast that the changes of the groundwater level in drainage process within and outside the mine pit, and it was quantitatively assessed that the possible water lowering result of the opencast water drainage process, which provide an important basis for the actual water lowering project and the possible project disposal.展开更多
Large scale open cut coal mining operations have significant impacts to groundwater in surrounding areas in both active and post-mining phases. The prediction of water inflows into a surface mine excavation is one of ...Large scale open cut coal mining operations have significant impacts to groundwater in surrounding areas in both active and post-mining phases. The prediction of water inflows into a surface mine excavation is one of the many components involved in mine design phase. Groundwater performance also reacts to mining activities from the operational, economic and safety implications perspective. Under NSW planning legislation, as part of the comprehensive risk assessment, a groundwater impact assessment has to be conducted for a coal project to predict and mitigate the impacts in consideration of the government requirements. In this paper, the groundwater assessment modelling of mine pits was discussed in predicting of groundwater inflows and reviewing analytical and numerical approaches. A methodology of groundwater impact assessment for an open cut mine in NSW with a three-dimensional groundwater flow model Modflow Surfact demonstrated its functions in simulating the project's impacts on the groundwater regime. The key findings with mitigations are discussed and recommended in the paper to reduce impacts on groundwater and fulfil regulation requirements in NSW.展开更多
In next two years, the current waste dump of Narynsukhait coal mine is predicted insufficient to accommodate the overburden as limited of the waste dump capacity. Thus, redesigning waste dump is paramount to increase ...In next two years, the current waste dump of Narynsukhait coal mine is predicted insufficient to accommodate the overburden as limited of the waste dump capacity. Thus, redesigning waste dump is paramount to increase capacity of the dump in future. This paper describes current condition of waste dump of Narynsukhait coal mine and then discusses the optimization of waste dump geometry by analyzing the effect of different waste dump’s bench configuration on slope performance. Optimization of the geometry is carried out by investigating and comparing the performance of geometrical combinations of bench height, bench angles and number of safety berm by means of numerical modeling. The model shows that increasing height of bench is able to induce shear stress in the bench and may initiate bench instable. However, the shear stress can be limited by having safety berm and/or reducing bench angle to satisfy the stability criteria.展开更多
The influence of the Haizhou Open Pit Mine on the atmospheric flow in nearby Fuxin City in China was analyzed with the aid of the steady-state Navier-Stokes equations. The finite element method was used to obtain nume...The influence of the Haizhou Open Pit Mine on the atmospheric flow in nearby Fuxin City in China was analyzed with the aid of the steady-state Navier-Stokes equations. The finite element method was used to obtain numerical solutions to these equations. The results showed that the Haizhou Open Pit Coal Mine contributes to the turbulent flow in the Fuxin City and its surroundings. However, when compared with the climatic effects, the open pit mine has a relatively small impact on the atmospheric flow over Fuxin.展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical ...Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical simulations and statistical regressions were applied for analyzing the recovery processes of the backfill and its major influencing factors for the thermal equilibrium in recently backfilled open pits at the Gulian strip coalmine in Mo'he, Northeast China. Results show that the thermal recovery time of backfilled areas is positively correlated to the backfill depth(BD) of the soils, the backfilled soil temperature(BST), and the mean annual ground surface temperature(MAGST); meanwhile, climate warming can impact on thermal regimes of the backfill area. The impact of climate warming on ground temperature of the backfill will show up significantly in about 50 years afterbackfilling(BD at 10.0 and 20.0 m, BST at 20.0°C) under the climate warming scenario(CWS) of 0.025°C·year ^(-1). Grey-relation analyses show that the sensitivity of the backfill recovery time declines in the order of the BD, BST and MAGST. On the basis of the abovementioned studies, the layer-by-layer backfilling in cold seasons is advised for more effective and more rapid recovery of thermal regimes of the backfilled open-pits in cold regions.展开更多
Acid Mine Drainage (AMD) which occurs when sulfide minerals are exposed to water and oxygen with an excavation is one of the serious environmental problems in the world. A dry cover system is generally constructed in ...Acid Mine Drainage (AMD) which occurs when sulfide minerals are exposed to water and oxygen with an excavation is one of the serious environmental problems in the world. A dry cover system is generally constructed in waste dump for the prevention of AMD in Indonesia by virtue of low cost and availability of waste rocks for a cover layer. However, the failure of the system caused by the lack of information related to the construction of cover system in mines, which leads to AMD, has been reported recently in Indonesia. In this study, the field investigation was conducted in pit and waste dump in open cast coal mine in Indonesia with the aim of obtaining the information on the construction of a cover layer and backfilling conditions of waste rocks in the waste dump. The rock samples taken in two areas of the mine were analyzed by geochemical analysis and sequential extraction with acids. The results indicated that Net Acid Producing Potential (NAPP) of the rocks in the waste dump down to 100 cm depth in both areas was from 10 to 30 kg H<sub>2</sub>SO<sub>4</sub>/ton, suggesting that Potentially Acid Forming (PAF) was backfilled in a cover layer. The backfill of PAF was contrary to the concept of cover system, which caused the failure of constructing a cover layer. The cause of the failure was likely attributed to the shortage of cover rocks which are classified as Non Acid Forming (NAF) or the failure of proper placement of them by an operational problem in the areas. Moreover, the results of the extraction with acids suggested that the form of iron and sulfur has to be taken into account to discuss the occurrence of AMD.展开更多
This paper presents a new risk assessment methodology for coal mine excavated slopes. This new empirical-statistical slope.stability assessment m. ethodology (SSAM! is intended for use by geotechnical engineers at bo...This paper presents a new risk assessment methodology for coal mine excavated slopes. This new empirical-statistical slope.stability assessment m. ethodology (SSAM! is intended for use by geotechnical engineers at both the design review and operational stages of a mine's life to categonse the risk of an excavated coal mine slope. A likelihood of failure is determined using a new slope stability classification system for excavated coal mine slopes developed using a database of 119 intact and failed case studies sourced from open cut coal mines in Australia. Consequence of failure is based on slope height and stand-off distance at the toe of the excavated slope. Results are presented in a new risk matrix, with slope risk being divided into low, medium and high categories. The SSAM is put forward as a new risk assess- ment methodology to assess the potential for, and consequence of, excavated coal mine slope failure. Unlike existing classification systems, assumptions about the likely failure mode or mechanism are not required. Instead, the SSAM applies an approach which compares the conditions present within the exca- vated slope face, with the known past performance of slopes with similar geotechnical and geometrical conditions, to estimate the slope's propensity for failure. The SSAM is novel in that it considers the depo- sitional history of strata in an excavated slope and how this sequence affects slope stability. It is further novel in that it does not require explicit measurements of intact rock, rock mass and/or defect strength to rapidly calculate a slope's likelihood of failure and overall risk. Ratings can be determined entirely from visual observations of the excavated slope face. The new SSAM is designed to be used in conjunction with existing slope stability assessment tools.展开更多
Spontaneous combustion of coal is a problem that affects the mining operation and generates environ-mental,economic,social and geotechnical impacts.This phenomenon has been divided into two pro-cesses:ignition and pro...Spontaneous combustion of coal is a problem that affects the mining operation and generates environ-mental,economic,social and geotechnical impacts.This phenomenon has been divided into two pro-cesses:ignition and propagation.Fire propagation develops in coal seams because of a set of factors such as direction and wind speed,fracturing and temperature.In this work,heat transfer and chemical kinetics are studied from conservation equations of energy and species,respectively,using the software COMSOL Multiphysics to simulate the propagation of fires in coal seams.Two possible scenarios were analyzed that usually occur in the walls of the coal seams,such as fire focus and fire complete screens.It was found that the propagation kinetics of the fire changes depending on the temperature,the fractur-ing of rock mass and the area of fire influence.For temperature values lower than 300℃,there is con-sumption around 250 cm^3/h,values around 700℃,the consumption is 1500 cm^3/h,and for fires of 1200℃ have values of 3000 cm^3/h.Depending on the speed of propagation can vary from 4 to 17cm/day,considering on the level and fracturing of the final wall of the open pit.展开更多
文摘Through the research on the model of the land reclamation in the refuse dumpof Heidaigou open coal mines,it was concerned that ecology was the theoretical basic forthe land reclamation of open coal mines.According to the principle of ecological substitut-ing,the land reclamation can be divided into three stages:water and soil conservation,ecological performance and economic performance.Taking the land reclamation in the re-fuse dump of Heidaigou open coal mines as the practical example,explained the applica-tion of the ecological substituting principle on the land reclamation in the open coal mines.
文摘According to the evolving principle of the organic and environment, firstly, for the purpose of growing and keeping the ground, some legume species were chosen as pioneer plants to improve the construction of soil and increased soil fertility in the light of the land term and soil condition. Along with soil fertility increased, it is necessary to culti-vate some shrubs and arbors which have extra resistance. Gradually it becomes the stereoscopic landscape of planting arbor-shrub-herb plants. So that the evolving of the organic and environment can be enhanced. Taking the land reclamation in the refuse dump of Heidaigou open coal mines as the practical example, explained the application of the organic and environment evolving principle on the land reclamation in the open coal mines.
文摘In view of the situation of excavation of should carry out simulation studies for the numerical open coal mine for the underground water disaster, we value of the water lowering project and improve the accuracy and the level of the water lowering project. On the basis of the hydrological geological conditions of certain open mine digging, a more reasonable seepage numerical model was built according to MODFLOW. It was simulated in advance that the process of the confined water level descending with the time, and combining with the actual observations to test the correctness of the model. The calculation showed that the results coincided well with the results of actual measurement. Based on this, different water lowering numerical simulations were built for the open coal mine digging. It could be simulated and forecast that the changes of the groundwater level in drainage process within and outside the mine pit, and it was quantitatively assessed that the possible water lowering result of the opencast water drainage process, which provide an important basis for the actual water lowering project and the possible project disposal.
文摘Large scale open cut coal mining operations have significant impacts to groundwater in surrounding areas in both active and post-mining phases. The prediction of water inflows into a surface mine excavation is one of the many components involved in mine design phase. Groundwater performance also reacts to mining activities from the operational, economic and safety implications perspective. Under NSW planning legislation, as part of the comprehensive risk assessment, a groundwater impact assessment has to be conducted for a coal project to predict and mitigate the impacts in consideration of the government requirements. In this paper, the groundwater assessment modelling of mine pits was discussed in predicting of groundwater inflows and reviewing analytical and numerical approaches. A methodology of groundwater impact assessment for an open cut mine in NSW with a three-dimensional groundwater flow model Modflow Surfact demonstrated its functions in simulating the project's impacts on the groundwater regime. The key findings with mitigations are discussed and recommended in the paper to reduce impacts on groundwater and fulfil regulation requirements in NSW.
文摘In next two years, the current waste dump of Narynsukhait coal mine is predicted insufficient to accommodate the overburden as limited of the waste dump capacity. Thus, redesigning waste dump is paramount to increase capacity of the dump in future. This paper describes current condition of waste dump of Narynsukhait coal mine and then discusses the optimization of waste dump geometry by analyzing the effect of different waste dump’s bench configuration on slope performance. Optimization of the geometry is carried out by investigating and comparing the performance of geometrical combinations of bench height, bench angles and number of safety berm by means of numerical modeling. The model shows that increasing height of bench is able to induce shear stress in the bench and may initiate bench instable. However, the shear stress can be limited by having safety berm and/or reducing bench angle to satisfy the stability criteria.
文摘The influence of the Haizhou Open Pit Mine on the atmospheric flow in nearby Fuxin City in China was analyzed with the aid of the steady-state Navier-Stokes equations. The finite element method was used to obtain numerical solutions to these equations. The results showed that the Haizhou Open Pit Coal Mine contributes to the turbulent flow in the Fuxin City and its surroundings. However, when compared with the climatic effects, the open pit mine has a relatively small impact on the atmospheric flow over Fuxin.
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
基金supported by the research projects of the National Natural Science Foundation of China (Grant No. 41401081) "Thermal impacts of organic matter on properties of permafrost soils in the Da Xing'anling (Hinggan) Mountains"the State Key Laboratory of Frozen Soils Engineering, Ministry of Science and Technology, China "Impacts of human activities on the hydrothermal processes of permafrost in the Da Xing'anling (Hinggan) Mountains – a case study from the Gulian strip coal mine" (Grant No. SKLFSE-ZT-41)
文摘Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical simulations and statistical regressions were applied for analyzing the recovery processes of the backfill and its major influencing factors for the thermal equilibrium in recently backfilled open pits at the Gulian strip coalmine in Mo'he, Northeast China. Results show that the thermal recovery time of backfilled areas is positively correlated to the backfill depth(BD) of the soils, the backfilled soil temperature(BST), and the mean annual ground surface temperature(MAGST); meanwhile, climate warming can impact on thermal regimes of the backfill area. The impact of climate warming on ground temperature of the backfill will show up significantly in about 50 years afterbackfilling(BD at 10.0 and 20.0 m, BST at 20.0°C) under the climate warming scenario(CWS) of 0.025°C·year ^(-1). Grey-relation analyses show that the sensitivity of the backfill recovery time declines in the order of the BD, BST and MAGST. On the basis of the abovementioned studies, the layer-by-layer backfilling in cold seasons is advised for more effective and more rapid recovery of thermal regimes of the backfilled open-pits in cold regions.
文摘Acid Mine Drainage (AMD) which occurs when sulfide minerals are exposed to water and oxygen with an excavation is one of the serious environmental problems in the world. A dry cover system is generally constructed in waste dump for the prevention of AMD in Indonesia by virtue of low cost and availability of waste rocks for a cover layer. However, the failure of the system caused by the lack of information related to the construction of cover system in mines, which leads to AMD, has been reported recently in Indonesia. In this study, the field investigation was conducted in pit and waste dump in open cast coal mine in Indonesia with the aim of obtaining the information on the construction of a cover layer and backfilling conditions of waste rocks in the waste dump. The rock samples taken in two areas of the mine were analyzed by geochemical analysis and sequential extraction with acids. The results indicated that Net Acid Producing Potential (NAPP) of the rocks in the waste dump down to 100 cm depth in both areas was from 10 to 30 kg H<sub>2</sub>SO<sub>4</sub>/ton, suggesting that Potentially Acid Forming (PAF) was backfilled in a cover layer. The backfill of PAF was contrary to the concept of cover system, which caused the failure of constructing a cover layer. The cause of the failure was likely attributed to the shortage of cover rocks which are classified as Non Acid Forming (NAF) or the failure of proper placement of them by an operational problem in the areas. Moreover, the results of the extraction with acids suggested that the form of iron and sulfur has to be taken into account to discuss the occurrence of AMD.
基金funded by the Australian Coal Association Research Program(ACARP)
文摘This paper presents a new risk assessment methodology for coal mine excavated slopes. This new empirical-statistical slope.stability assessment m. ethodology (SSAM! is intended for use by geotechnical engineers at both the design review and operational stages of a mine's life to categonse the risk of an excavated coal mine slope. A likelihood of failure is determined using a new slope stability classification system for excavated coal mine slopes developed using a database of 119 intact and failed case studies sourced from open cut coal mines in Australia. Consequence of failure is based on slope height and stand-off distance at the toe of the excavated slope. Results are presented in a new risk matrix, with slope risk being divided into low, medium and high categories. The SSAM is put forward as a new risk assess- ment methodology to assess the potential for, and consequence of, excavated coal mine slope failure. Unlike existing classification systems, assumptions about the likely failure mode or mechanism are not required. Instead, the SSAM applies an approach which compares the conditions present within the exca- vated slope face, with the known past performance of slopes with similar geotechnical and geometrical conditions, to estimate the slope's propensity for failure. The SSAM is novel in that it considers the depo- sitional history of strata in an excavated slope and how this sequence affects slope stability. It is further novel in that it does not require explicit measurements of intact rock, rock mass and/or defect strength to rapidly calculate a slope's likelihood of failure and overall risk. Ratings can be determined entirely from visual observations of the excavated slope face. The new SSAM is designed to be used in conjunction with existing slope stability assessment tools.
基金CIMEX Mineral Institute of the National University of Colombia for the trust and support provided for the development of this researchthe Cerrejón company for financing this project
文摘Spontaneous combustion of coal is a problem that affects the mining operation and generates environ-mental,economic,social and geotechnical impacts.This phenomenon has been divided into two pro-cesses:ignition and propagation.Fire propagation develops in coal seams because of a set of factors such as direction and wind speed,fracturing and temperature.In this work,heat transfer and chemical kinetics are studied from conservation equations of energy and species,respectively,using the software COMSOL Multiphysics to simulate the propagation of fires in coal seams.Two possible scenarios were analyzed that usually occur in the walls of the coal seams,such as fire focus and fire complete screens.It was found that the propagation kinetics of the fire changes depending on the temperature,the fractur-ing of rock mass and the area of fire influence.For temperature values lower than 300℃,there is con-sumption around 250 cm^3/h,values around 700℃,the consumption is 1500 cm^3/h,and for fires of 1200℃ have values of 3000 cm^3/h.Depending on the speed of propagation can vary from 4 to 17cm/day,considering on the level and fracturing of the final wall of the open pit.