Large scale open cut coal mining operations have significant impacts to groundwater in surrounding areas in both active and post-mining phases. The prediction of water inflows into a surface mine excavation is one of ...Large scale open cut coal mining operations have significant impacts to groundwater in surrounding areas in both active and post-mining phases. The prediction of water inflows into a surface mine excavation is one of the many components involved in mine design phase. Groundwater performance also reacts to mining activities from the operational, economic and safety implications perspective. Under NSW planning legislation, as part of the comprehensive risk assessment, a groundwater impact assessment has to be conducted for a coal project to predict and mitigate the impacts in consideration of the government requirements. In this paper, the groundwater assessment modelling of mine pits was discussed in predicting of groundwater inflows and reviewing analytical and numerical approaches. A methodology of groundwater impact assessment for an open cut mine in NSW with a three-dimensional groundwater flow model Modflow Surfact demonstrated its functions in simulating the project's impacts on the groundwater regime. The key findings with mitigations are discussed and recommended in the paper to reduce impacts on groundwater and fulfil regulation requirements in NSW.展开更多
This paper presents a new risk assessment methodology for coal mine excavated slopes. This new empirical-statistical slope.stability assessment m. ethodology (SSAM! is intended for use by geotechnical engineers at bo...This paper presents a new risk assessment methodology for coal mine excavated slopes. This new empirical-statistical slope.stability assessment m. ethodology (SSAM! is intended for use by geotechnical engineers at both the design review and operational stages of a mine's life to categonse the risk of an excavated coal mine slope. A likelihood of failure is determined using a new slope stability classification system for excavated coal mine slopes developed using a database of 119 intact and failed case studies sourced from open cut coal mines in Australia. Consequence of failure is based on slope height and stand-off distance at the toe of the excavated slope. Results are presented in a new risk matrix, with slope risk being divided into low, medium and high categories. The SSAM is put forward as a new risk assess- ment methodology to assess the potential for, and consequence of, excavated coal mine slope failure. Unlike existing classification systems, assumptions about the likely failure mode or mechanism are not required. Instead, the SSAM applies an approach which compares the conditions present within the exca- vated slope face, with the known past performance of slopes with similar geotechnical and geometrical conditions, to estimate the slope's propensity for failure. The SSAM is novel in that it considers the depo- sitional history of strata in an excavated slope and how this sequence affects slope stability. It is further novel in that it does not require explicit measurements of intact rock, rock mass and/or defect strength to rapidly calculate a slope's likelihood of failure and overall risk. Ratings can be determined entirely from visual observations of the excavated slope face. The new SSAM is designed to be used in conjunction with existing slope stability assessment tools.展开更多
文摘Large scale open cut coal mining operations have significant impacts to groundwater in surrounding areas in both active and post-mining phases. The prediction of water inflows into a surface mine excavation is one of the many components involved in mine design phase. Groundwater performance also reacts to mining activities from the operational, economic and safety implications perspective. Under NSW planning legislation, as part of the comprehensive risk assessment, a groundwater impact assessment has to be conducted for a coal project to predict and mitigate the impacts in consideration of the government requirements. In this paper, the groundwater assessment modelling of mine pits was discussed in predicting of groundwater inflows and reviewing analytical and numerical approaches. A methodology of groundwater impact assessment for an open cut mine in NSW with a three-dimensional groundwater flow model Modflow Surfact demonstrated its functions in simulating the project's impacts on the groundwater regime. The key findings with mitigations are discussed and recommended in the paper to reduce impacts on groundwater and fulfil regulation requirements in NSW.
基金funded by the Australian Coal Association Research Program(ACARP)
文摘This paper presents a new risk assessment methodology for coal mine excavated slopes. This new empirical-statistical slope.stability assessment m. ethodology (SSAM! is intended for use by geotechnical engineers at both the design review and operational stages of a mine's life to categonse the risk of an excavated coal mine slope. A likelihood of failure is determined using a new slope stability classification system for excavated coal mine slopes developed using a database of 119 intact and failed case studies sourced from open cut coal mines in Australia. Consequence of failure is based on slope height and stand-off distance at the toe of the excavated slope. Results are presented in a new risk matrix, with slope risk being divided into low, medium and high categories. The SSAM is put forward as a new risk assess- ment methodology to assess the potential for, and consequence of, excavated coal mine slope failure. Unlike existing classification systems, assumptions about the likely failure mode or mechanism are not required. Instead, the SSAM applies an approach which compares the conditions present within the exca- vated slope face, with the known past performance of slopes with similar geotechnical and geometrical conditions, to estimate the slope's propensity for failure. The SSAM is novel in that it considers the depo- sitional history of strata in an excavated slope and how this sequence affects slope stability. It is further novel in that it does not require explicit measurements of intact rock, rock mass and/or defect strength to rapidly calculate a slope's likelihood of failure and overall risk. Ratings can be determined entirely from visual observations of the excavated slope face. The new SSAM is designed to be used in conjunction with existing slope stability assessment tools.