The easiest and most reliable joining method is the mechanical joint with a bolt and nut or rivet. However, in the case of composite laminates, mechanical joint properties decrease because of lower interlaminar proper...The easiest and most reliable joining method is the mechanical joint with a bolt and nut or rivet. However, in the case of composite laminates, mechanical joint properties decrease because of lower interlaminar properties compared to in-plane properties around hole.?This study investigated needle punching process with the aim of improving the mechanical properties in the thickness direction of fiber-reinforced plastic composite laminates with an open hole. Needle punching process was applied to glass fiber chopped strand matused as the reinforcement for the composite laminates. Open-hole tensile tests and observations of end cross-sections after the tests were performed. The tensile properties and fracture mechanism of the specimens subjected to needle punching process were investigated. In addition, characteristic distance (a parameter for evaluating resistance to fracture in open-hole tensile test specimens) was also calculated to examine the effects of needle punching process conditions on fracture toughness. Tensile strength was improved by more than 15% by needle punching process. However, when a certain needle punching density was exceeded, the mechanical properties worsened. In addition, characteristic distance increased with increasing needle punching density. Thus, these results suggest that there is an optimal needle punching density with respect to strength and characteristic distance.展开更多
A new stress-based multi-scale failure criterion is proposed based on a series of off-axis tension tests, and their corresponding fiber failure modes and matrix failure modes are determined at the microscopic level. I...A new stress-based multi-scale failure criterion is proposed based on a series of off-axis tension tests, and their corresponding fiber failure modes and matrix failure modes are determined at the microscopic level. It is a physical mechanism based, three-dimensional damage analysis criterion which takes into consideration the constituent properties on the macroscopic failure behavior of the composite laminates. A complete set of stress transformation, damage determination and evolution methods are established to realize the application of the multi-scale method in failure analysis. Open-hole tension(OHT) specimens of three material systems(CCF300/5228, CCF300/5428 and T700/5428) are tested according to ASTM standard D5766, and good agreements are found between the experimental results and the numerical predictions. It is found that fiber strength is a key factor influencing the ultimate strength of the laminates, while matrix failure alleviates the stress concentration around the hole. Different matchings of fiber and matrix result in different failure modes as well as ultimate strengths.展开更多
Carbon fiber-reinforced plastic (CFRP) laminates with initially cut fibers (ICFs) have good formability without large degradation of static strength;however, their fatigue behavior has not been investigated thus far. ...Carbon fiber-reinforced plastic (CFRP) laminates with initially cut fibers (ICFs) have good formability without large degradation of static strength;however, their fatigue behavior has not been investigated thus far. In this paper, we investigated fatigue behavior and damage progress of open-holed CFRP laminates with ICFs having interlayers. Three types of CFRP laminates were employed: a laminate without ICF fabricated using an autoclave (Continuous-A), a laminate with ICF fabricated using an autoclave (ICF-A) and a laminate with ICF fabricated using press molding (ICF-P). First, fatigue test was conducted to obtain S (maximum stress)-N (the number of cycles to failure) curves in order to reveal fatigue strength. The fatigue tests for several specimens were interrupted at three prescribed numbers of cycles to observe damage progress. It is found that the Continuous-A laminate shows little strength degradation in the S-N curve while fatigue strength in both ICF laminates is decreased by approximately 30% at N of 106. In contrast, the damage progress of the ICF-P laminate is the least among the three laminates while the delamination progress at both edges and around the hole in the Continuous-A laminate is the most prominent.展开更多
文摘The easiest and most reliable joining method is the mechanical joint with a bolt and nut or rivet. However, in the case of composite laminates, mechanical joint properties decrease because of lower interlaminar properties compared to in-plane properties around hole.?This study investigated needle punching process with the aim of improving the mechanical properties in the thickness direction of fiber-reinforced plastic composite laminates with an open hole. Needle punching process was applied to glass fiber chopped strand matused as the reinforcement for the composite laminates. Open-hole tensile tests and observations of end cross-sections after the tests were performed. The tensile properties and fracture mechanism of the specimens subjected to needle punching process were investigated. In addition, characteristic distance (a parameter for evaluating resistance to fracture in open-hole tensile test specimens) was also calculated to examine the effects of needle punching process conditions on fracture toughness. Tensile strength was improved by more than 15% by needle punching process. However, when a certain needle punching density was exceeded, the mechanical properties worsened. In addition, characteristic distance increased with increasing needle punching density. Thus, these results suggest that there is an optimal needle punching density with respect to strength and characteristic distance.
基金the National Basic Research and Development Program of China: Basic Scientific Research of Advanced Composites in Aeronautic and Astronautic Application Technology (No. 2010CB631103)
文摘A new stress-based multi-scale failure criterion is proposed based on a series of off-axis tension tests, and their corresponding fiber failure modes and matrix failure modes are determined at the microscopic level. It is a physical mechanism based, three-dimensional damage analysis criterion which takes into consideration the constituent properties on the macroscopic failure behavior of the composite laminates. A complete set of stress transformation, damage determination and evolution methods are established to realize the application of the multi-scale method in failure analysis. Open-hole tension(OHT) specimens of three material systems(CCF300/5228, CCF300/5428 and T700/5428) are tested according to ASTM standard D5766, and good agreements are found between the experimental results and the numerical predictions. It is found that fiber strength is a key factor influencing the ultimate strength of the laminates, while matrix failure alleviates the stress concentration around the hole. Different matchings of fiber and matrix result in different failure modes as well as ultimate strengths.
文摘Carbon fiber-reinforced plastic (CFRP) laminates with initially cut fibers (ICFs) have good formability without large degradation of static strength;however, their fatigue behavior has not been investigated thus far. In this paper, we investigated fatigue behavior and damage progress of open-holed CFRP laminates with ICFs having interlayers. Three types of CFRP laminates were employed: a laminate without ICF fabricated using an autoclave (Continuous-A), a laminate with ICF fabricated using an autoclave (ICF-A) and a laminate with ICF fabricated using press molding (ICF-P). First, fatigue test was conducted to obtain S (maximum stress)-N (the number of cycles to failure) curves in order to reveal fatigue strength. The fatigue tests for several specimens were interrupted at three prescribed numbers of cycles to observe damage progress. It is found that the Continuous-A laminate shows little strength degradation in the S-N curve while fatigue strength in both ICF laminates is decreased by approximately 30% at N of 106. In contrast, the damage progress of the ICF-P laminate is the least among the three laminates while the delamination progress at both edges and around the hole in the Continuous-A laminate is the most prominent.