期刊文献+
共找到5,818篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
1
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Effect of slow shot speed on externally solidified crystal,porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy
2
作者 Wen-ning Liu Wei Zhang +6 位作者 Peng-yue Wang Yi-xian Liu Xiang-yi Jiao Ao-xiang Wan Cheng-gang Wang Guo-dong Tong Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第1期11-19,共9页
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi... The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%). 展开更多
关键词 hypoeutectic Al-Si alloy high pressure die casting POROSITY externally solidified crystal tensile property
下载PDF
Effects of magnesium and copper additions on tensile properties of Al-Si-Cr die casting alloy under as-cast and T5 conditions 被引量:1
3
作者 Hong-yi Zhan Yi-wu Xu +3 位作者 Pan Wang Jian-feng Wang Jin-ping Li Le-peng Zhang 《China Foundry》 SCIE CAS CSCD 2023年第1期12-22,共11页
Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mas... Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mass-efficient thin-walled body structures.For body structures that require excellent ductility and fracture toughness to be joined with steel sheet via self-piercing riveting(for instance,shock towers and hinge pillars,etc.),a costly T7 heat treatment comprising a solution heat treatment at elevated temperatures(450℃-500℃)followed by an over-ageing heat treatment is needed to optimize microstructure for meeting product requirement.To enable cost-efficient mass production of HPDC body structures,it is important to eliminate the expensive T7 heat treatment without sacrificing mechanical properties.Optimizing die cast alloy chemistry is a potential solution to improve fracture toughness and ductility of the HPDC components.The present study intends to tailor the Mg and Cu additions for a new Al-Si-Cr type die casting alloy(registered as A379 with The Aluminum Association,USA)to achieve the desired tensile properties without using T7 heat treatment.It was found that Cu addition should be avoided,as it is not effective in enhancing strength while degrades tensile ductility.Mg addition is very effective in improving strength and has minor impact on tensile ductility.The investigated Al-Si-Cr alloy with a nominal composition of Al-8.5wt.%Si-0.3wt.%Cr-0.2wt.%Fe shows comparable tensile properties with the T7 treated AlSi10MnMg alloy which is currently used for manufacturing shock towers and hinge pillars. 展开更多
关键词 Al-Si alloy INTERMETALLICS high pressure die casting tensile property T7 heat treatment
下载PDF
Effect of Cooling Rates on Solidification Microstructures and Tensile Property of a Novel Wrought Superalloy
4
作者 李鑫旭 JIA Chonglin +1 位作者 YU Ang JIANG Zhouhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期903-910,共8页
The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship... The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship between the secondary dendrite arm spacing and cooling rate was determined and it was confirmed to be valid.Secondly,it can be found from microstructure observations that the morphology of(Nb,Ti)C carbides transits from blocky and script type to fine script type and spotty type,and the refinedγ'phase was observed due to decrease of segregation with increasing cooling rates.Thirdly,the solidification microstructures of the industrial-scale samples were analyzed.The morphology ofηphase changes from indistinguishable shape,fine needle-like shape to large block-like shape with increasing ingot diameter.As a result,the mechanical properties of alloy decrease due to increase of brittle precipitations.The experimental results show that the precipitation behavior of GH4151 is affected by segregation degree of elements,and the segregation degree is determined by solute distribution process and solid back-diffusion process. 展开更多
关键词 GH4151 superalloy SOLIDIFICATION SEGREGATION cooling rate tensile properties
下载PDF
Multiscale tensegrity model for the tensile properties of DNA nanotubes
5
作者 Hanlin LIU Nenghui ZHANG Wei LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期397-410,共14页
DNA nanotubes(DNTs)with user-defined shapes and functionalities have potential applications in many fields.So far,compared with numerous experimental studies,there have been only a handful of models on the mechanical ... DNA nanotubes(DNTs)with user-defined shapes and functionalities have potential applications in many fields.So far,compared with numerous experimental studies,there have been only a handful of models on the mechanical properties of such DNTs.This paper aims at presenting a multiscale model to quantify the correlations among the pre-tension states,tensile properties,encapsulation structures of DNTs,and the surrounding factors.First,by combining a statistical worm-like-chain(WLC)model of single DNA deformation and Parsegian's mesoscopic model of DNA liquid crystal free energy,a multiscale tensegrity model is established,and the pre-tension state of DNTs is characterized theoretically for the first time.Then,by using the minimum potential energy principle,the force-extension curve and tensile rigidity of pre-tension DNTs are predicted.Finally,the effects of the encapsulation structure and surrounding factors on the tensile properties of DNTs are studied.The predictions for the tensile behaviors of DNTs can not only reproduce the existing experimental results,but also reveal that the competition of DNA intrachain and interchain interactions in the encapsulation structures determines the pre-tension states of DNTs and their tensile properties.The changes in the pre-tension states and environmental factors make the monotonic or non-monotonic changes in the tensile properties of DNTs under longitudinal loads. 展开更多
关键词 DNA nanotube(DNT) multiscale model tensegrity structure pre-tension state tensile property
下载PDF
Improved continuous precipitation kinetics and tensile properties of extruded AZ80 alloy through {10-12} twin formation
6
作者 Hyun Ji Kim Sumi Jo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3323-3337,共15页
This study investigates the effect of{10-12}deformation twins on the continuous precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy during aging.The extruded AZ80 alloy is compressed along the transv... This study investigates the effect of{10-12}deformation twins on the continuous precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy during aging.The extruded AZ80 alloy is compressed along the transverse direction to introduce{10-12}twins,followed by an aging treatment at 300℃.The extruded material exhibits a twin-free microstructure with low internal strain energy,whereas the pre-twinned material possesses abundant{10-12}twins and has high internal strain energy.The aging results reveal that the peak-aging time of the pre-twinned material(1 h)is one-eighth of that of the extruded material(8 h).Although Mg_(17)Al_(12)continuous precipitates(CPs)are observed in both the peak-aged materials,these CPs are much smaller and more densely distributed in the pre-twinned material despite the significantly shorter aging time.The CPs size in the peak-aged materials increases in the following order:twinned region in the pre-twinned material(0.47μm)<residual matrix region in the pre-twinned material(1.71μm)<matrix region in the extruded material(2.55μm).Moreover,the CPs number density in the twinned region of the pre-twinned material is approximately 11 times higher than that in the matrix region of the extruded material.The peak-aged pre-twinned material exhibits significantly higher tensile strength and ductility than the peak-aged extruded material.These results demonstrate that the formation of{10-12}twins in the extruded AZ80 alloy substantially accelerates the static precipitation of CPs during aging at 300℃and improves the tensile properties of the peak-aged material. 展开更多
关键词 AZ80 alloy {10-12}twin AGING Continuous precipitation tensile properties
下载PDF
Effect of Curing Age on Tensile Properties of Fly Ash Based Engineered Geopolymer Composites(FA-EGC)by Uniaxial Tensile Test and Ultrasonic Pulse Velocity Method
7
作者 GUO Xiaolu LI Shuyue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1319-1325,共7页
Tensile properties of fly ash based engineered geopolymer composites(FA-EGC)at different curing ages were studied by uniaxial tensile test and ultrasonic pulse velocity(UPV)methods,which included uniaxial tensile prop... Tensile properties of fly ash based engineered geopolymer composites(FA-EGC)at different curing ages were studied by uniaxial tensile test and ultrasonic pulse velocity(UPV)methods,which included uniaxial tensile properties,the correlation between ultrasonic pulse velocity and tensile properties,and characteristic parameters of microcracks.The experimental results show that obvious strain hardening behavior can be found in FA-EGC at different curing ages.With the increase of curing age,the tensile strength increases,the tensile strain decreases and the toughness becomes worse.The UPV of FA-EGC increases with curing age,and a strong correlation can be found between tensile strength and UPV.With the increase of curing age,the average crack width of FA-EGC decreases and the total number of cracks increases.This is because the strength of geopolymer increases fast at early age,thus the later strength development of FA-EGC tend to be stable.At the same time,the bond strength between fiber and matrix,and the friction of fiber/matrix interface continue to increase with curing age,thus the bridging effect of fiber is gradually strengthened.In conclusion,the increase of curing age is beneficial to the development of tensile properties of FA-EGC. 展开更多
关键词 engineered geopolymer composites(EGC) tensile properties ultrasonic pulse velocity(UPV) characteristic parameters of microcracks
下载PDF
Effect of heat treatment on microstructure and tensile properties of A356 alloys 被引量:27
8
作者 彭继华 唐小龙 +1 位作者 何健亭 许德英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1950-1956,共7页
Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment ... Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment is a short time treatment(solution at 550 ℃ for 2 h + aging at 170 ℃ for 2 h).The effects of heat treatment on microstructure and tensile properties of the Al-7%Si-0.3%Mg alloys were investigated by optical microscopy,scanning electronic microscopy and tension test.It is found that a 2 h solution at 550 ℃ is sufficient to make homogenization and saturation of magnesium and silicon in α(Al) phase,spheroid of eutectic Si phase.Followed by solution,a 2 h artificial aging at 170 ℃ is almost enough to produce hardening precipitates.Those samples treated with T6 achieve the maximum tensile strength and fracture elongation.With short time treatment(ST),samples can reach 90% of the maximum yield strength,95% of the maximum strength,and 80% of the maximum elongation. 展开更多
关键词 Al-Si casting alloys heat treatment tensile property microstructural evolution
下载PDF
Microstructure and tensile properties of containerless near-isothermally forged TiAl alloys 被引量:4
9
作者 贺卫卫 汤慧萍 +3 位作者 刘海彦 贾文鹏 刘咏 杨鑫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2605-2609,共5页
Ti-47Al-2Nb-2Cr-0.4(W, Mo) (mole fraction, %) alloy ingot fabricated using vacuum consumable melting was containerless near-isothermally forged, and the high temperature forgeability, microstructure and tensile pr... Ti-47Al-2Nb-2Cr-0.4(W, Mo) (mole fraction, %) alloy ingot fabricated using vacuum consumable melting was containerless near-isothermally forged, and the high temperature forgeability, microstructure and tensile properties were investigated. The results show that the TiAl ingot exhibits good heat workability during containerless near-isothermally forging process, and there are not evident cracks on the surface of as-forged TiAl pancake with a total deformation degree of 60%. The microstructure of the TiAl ingot appears to be typical nearly-lamellar(NL), comprising a great amount of lamellar colonies (α2+γ) and a few equiaxed γ grains. After near-isothermally forging, the as-forged pancake shows primarily fine equiaxed γ grains with an average grain size of 20 μm and some broken lamellar pieces, and some bent lamellas still exist in the hard-deformation zone. Tensile tests at room temperature show that ultimate tensile strength increases from 433 MPa to 573 MPa after forging due to grain refinement effect. 展开更多
关键词 TiAl alloy MICROSTRUCTURE tensile property containerless near-isothermal forging grain refinement
下载PDF
Microstructure and tensile properties of AE42-based magnesium alloys with calcium addition 被引量:2
10
作者 白晶 孙扬善 +2 位作者 丁绍松 薛烽 汪黎 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期43-48,共6页
The as-cast microstructure of AE42 was of typical dendritic and composed of the a matrix and some needle-shaped interphases Al11RE3. A small mount of Ca addition results in significant microstructural refinement and f... The as-cast microstructure of AE42 was of typical dendritic and composed of the a matrix and some needle-shaped interphases Al11RE3. A small mount of Ca addition results in significant microstructural refinement and formation of a Al2Ca phase, which showed two kinds of morphologies, lamellar and tiny granular. The former distributes on grain boundaries and the later is within the matrix grains. With the increase of Ca addition the volume fraction of Al-RE compound (Al11RE3) decreases, but Al2Ca increases. Addition of Ca causes a significant increase of yield strength of the alloy both at ambient and elevated temperatures, but a little decrease of the ductility. With calcium addition the ultimate strength decreases at ambient temperature and 150°t, but increases at 175°C and 200°C. 展开更多
关键词 ADDITIVES Aluminum compounds CALCIUM DUCTILITY Grain boundaries Metallographic microstructure Morphology tensile properties Volume fraction
下载PDF
Tensile and wear properties of TiC reinforced 420 stainless steel fabricated by in situ synthesis 被引量:2
11
作者 汪黎 孙扬善 +2 位作者 樊泉 薛烽 段志超 《Journal of Southeast University(English Edition)》 EI CAS 2004年第4期486-491,共6页
TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the ... TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the distribution of TiC particles with size of 5 to 10 μm in diameter is uniform if the volume fraction of TiC is lower than 6%. However, slight agglomeration can be observed when the TiC content exceeds 6%. With the increase of TiC content the tensile and yield strength of the composites prepared increases and reaches the maximum when the volume fraction of TiC increases to 5%. Further increase of TiC content causes reductions of yield and tensile strength. The ductility of the composites shows a monotone decrease with the increase of TiC addition. The introduction of TiC into 420 stainless steel results in significant improvement on wear resistance, which reaches a steady level when the volume fraction of TiC increases to 11% and does not show obvious variation if the TiC content is further increased. 展开更多
关键词 AGGLOMERATION Composite materials In situ processing Microstructure Stainless steel tensile properties Wear resistance
下载PDF
Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires 被引量:3
12
作者 王卫东 易成龙 樊康旗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3353-3361,共9页
Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperature... Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed. 展开更多
关键词 ultrathin nickel nanowires temperature dependence strain rate dependence tensile properties molecular dynamics simulation
下载PDF
Tensile properties and microstructure of Ti14 alloy after semi-solid forging 被引量:1
13
作者 陈永楠 魏建锋 +1 位作者 赵永庆 张学敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2610-2616,共7页
Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reve... Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reveal that high strength and low ductility are obtained in all semi-solid forged alloys. Tensile properties decrease as the semi-solid forging temperature increases, and cleavage fractures are observed after semi-solid forging at 1 050 °C. The variations in tensile properties are attributed to the coarse microstructures obtained in the semi-solid alloys. It is found that the elevated semi-solid temperatures lead to more liquid precipitates along the prior grain boundaries, which increases the peritectic precipitation and formation of Ti2Cu precipitation zones during re-solidification. Recrystallization heat treatment leads to fine microstructure of semi-solid forged alloys, resulting in improvement of tensile properties. 展开更多
关键词 Ti14 alloy semi-solid forging MICROSTRUCTURE tensile properties heat treatment
下载PDF
Biaxial tensile properties and elastic constants evaluation of envelope material for airship 被引量:1
14
作者 陈建稳 陈务军 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期467-474,共8页
This paper presents an experimental study to determine the tensile properties of the envelope fabric Uretek3216L under biaxial cyclic loading.First the biaxial cyclic tests were carefully carried out on the envelope m... This paper presents an experimental study to determine the tensile properties of the envelope fabric Uretek3216L under biaxial cyclic loading.First the biaxial cyclic tests were carefully carried out on the envelope material to obtain the stress-strain data and the corresponding nonlinearity and orthotropy of the material were analyzed. Then for some determination options with different stress ratios the least squares method minimizing the strain terms was used to calculate the elastic constants from the experimental data.Finally the influences of the determination options with different stress ratios and the reciprocal relationship on the elastic constants were discussed.Results show that the orthotropy of the envelope material can be attributed to the unbalanced crimp of their constitutive yarns in warp and weft directions and the elastic constants vary noticeably with the determination options as well as the normalized stress ratios.In real design practice it is more reasonable to use constants determined for specific stress states in particular stress ratios depending on the project&#39;s needs.Also calculating the structures with two limitative sets of elastic constants instead of using only one set is recommendable in light of the great variety of the constant&#39;s values. 展开更多
关键词 coated fabric AIRSHIP tensile property reciprocal relationship elastic constant stress ratio
下载PDF
IMPROVEMENT ON TENSILE PROPERTIES AND CREEP RESISTANCE OF Fe 3Al BASED ALLOYS 被引量:1
15
作者 姚正军 孙扬善 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期135-139,共5页
Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al... Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al based alloys. Surface analysis by XPS demonstrates that cerium addition causes the change in the oxide chemistry and provides rapid passivation of the specimen surface. The high temperature strength and creep resistance of Fe 3Al based alloys can be significantly enhanced by alloying additions of tungsten, niobium or molybdenum, especially when combined additions of tungsten with niobium or molybdenum are used. The additions of tungsten, niobium or molybdenum also result in the significant microstructural refinement and the formation of fine precipitates which are identified as M 6C type carbide in the alloys containing tungsten. 展开更多
关键词 materials Fe 3Al tensile and creep resistance properties MICROALLOYING
下载PDF
Effects of temperature on tensile properties and deformation behavior of GH4586A superalloy 被引量:1
16
作者 刘杨 王磊 《材料与冶金学报》 CAS 2006年第4期288-291,299,共5页
Effects of temperature on tensile properties and deformation behavior of the nickel-based superalloy GH4586A have been investigated. The results showed that deforming temperature has no effect on the microstructure of... Effects of temperature on tensile properties and deformation behavior of the nickel-based superalloy GH4586A have been investigated. The results showed that deforming temperature has no effect on the microstructure of the alloy, while tensile properties are thermo-sensitive. With the increasing testing temperature the strength of the alloy decreased, and the ductility increased. While, the ductility of the alloy decreased weakly at the temperature range of 823 K to 923 K. And the main reason can be considered as the easily-broken of the MC type block carbides due to the stress concentration at the interface between the matrix and carbides to form the micro-cracks during the deforming process. 展开更多
关键词 高温合金 拉伸性能 变形性 温度
下载PDF
Effect of glass fibre(GF) addition on microstructure and tensile property of GF/Pb composites fabricated by powder metallurgy
17
作者 耿耀宏 王蓬瑚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2672-2678,共7页
GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that rel... GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that relative densities decrease with increasing GF fraction, and the 50μm-GF reinforced specimens exhibit a better densification than the 300μm-GF reinforced ones. The GF particles distribute quite uniformly inPb matrix, and the composites fabricated at low sintering temperature (〈200℃) possess fine-grain microstructure. The addition of GF significantly improves the strength of the Pb composites, and the ultimate tensile strength of the Pb composite reinforcedwith the addition of 50μm-0.5% GF(mass fraction)is about 30MPa higher than that of GF-free sample. For all composites groups, increasing the reinforcement content from 0.5%to 2%(mass fraction)results in a decrease in both tensile strength and ductility. 展开更多
关键词 GF/Pb composites powder metallurgy sintering microstructure tensile property
下载PDF
Study on mechanical properties of composite materials by in-situ tensile test
18
作者 黄海波 李凡 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期49-52,共4页
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p... The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface. 展开更多
关键词 Cracks Fiber reinforced materials Interfaces (materials) Mechanical properties MICROSTRUCTURE Scanning electron microscopy Silicon carbide tensile testing
下载PDF
Microstructure and room temperature tensile property of as-cast Ti44Al6Nb1.0Cr2.0V alloy 被引量:1
19
作者 董书琳 陈瑞润 +3 位作者 郭景杰 丁宏升 苏彦庆 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1097-1105,共9页
The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-18... The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-1830 μm. This as-cast alloy has a modified near lamellar(M-NL) structure that is composed of mainly larger(α2+γ) lamella colonies and smaller(B2+equiaxed γ) blocky morphology. It exhibits the moderate tensile properties at room temperature, in which the Region(5) yields the ultimate tensile strength(UTS) about 499 MPa and the elongation about 0.53%. The obvious brittle fracture characteristics and trans-granular interlamellar fracture are the predominant modes. After room temperature tensile testing, there are some <101] and a few 1/2<112] superdislocations in the γ phase. The as-cast microcrack is the main factor to deteriorate the tensile property, which results in the premature fracture, poor ductility and few dislocations. The addition of Nb, Cr and V can decrease stacking fault energy(SFE) obviously, which is helpful to enhancing the ductility of the alloy. 展开更多
关键词 titanium aluminum alloy AS-CAST MICROSTRUCTURE tensile property MICROCRACK
下载PDF
Microstructure and tensile properties of low cost titanium alloys at different cooling rate 被引量:8
20
作者 Wang Guo Hui Songxiao +3 位作者 Ye Wenjun Mi Xujun Wang Yongling Zhang Wenjing 《Rare Metals》 SCIE EI CAS CSCD 2012年第6期531-536,共6页
Titanium and titanium alloys have several advantages, but the cost of titanium alloys is very expensive compared with the traditional metal materials. This article introduces two new low-cost titanium alloys Ti-2.1Cr-... Titanium and titanium alloys have several advantages, but the cost of titanium alloys is very expensive compared with the traditional metal materials. This article introduces two new low-cost titanium alloys Ti-2.1Cr-1.3Fe (TCF alloy) and Ti-3Al-2.1Cr-1.3Fe (TACF alloy). In this study, we used Cr-Fe master alloy as one of the raw materials to develop the two new alloys. We introduce the microstructure and tensile properties of the two new alloys from β solution treated with different cooling methods. Optical microscopy (OM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM) were employed to analyze the phase constitution, and scanning electron microscopy (SEM) was used to observe the fracture surfaces. The results indicate that the microstructures consist of β grain boundary and α′ martensite after water quenching (WQ), β matrix and α phase after air cooling (AC) and furnace cooling (FC), respectively. Also, the microstructure is the typical basketweave structures after FC. Of course, athermal ω is also observed by TEM after WQ. The strength increases with decreasing cooling rates and the plasticity is reversed. Because of the athermal ω, the strength and ductility are highest and lowest when the cooling method is WQ. The strength of TACF alloy is higher than the TCF alloy, but the plasticity is lower. The fracture surfaces are almost entirely covered with dimples under the cooling methods of AC and FC. Also, we observe an intergranular fracture area that is generated by athermal ω, although some dimples are observed after WQ. 展开更多
关键词 titanium alloys MICROSTRUCTURE MARTENSITE tensile properties fracture morphology
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部