With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS pr...With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS project network,namely an Open-Source Software ECOsystem(OSSECO).Unfortunately,not all OS projects in the open-source ecosystem can be healthy and stable in the long term,and more projects will go from active to inactive and gradually die.In a tightly connected ecosystem,the death of one project can potentially cause the collapse of the entire ecosystem network.How can we effectively prevent such situations from happening?In this paper,we first identify the basic project characteristics that affect the survival of OS projects at both project and ecosystem levels through the proportional hazards model.Then,we utilize graph convolutional networks based on the ecosystem network to extract the ecosystem environment characteristics of OS projects.Finally,we fuse basic project characteristics and environmental project characteristics and construct a Hybrid Structured Prediction Model(HSPM)to predict the OS project survival state.The experimental results show that HSPM significantly improved compared to the traditional prediction model.Our work can substantially assist OS project managers in maintaining their projects’health.It can also provide an essential reference for developers when choosing the right open-source project for their production activities.展开更多
With the rise of open-source software,the social development paradigm occupies an indispensable position in the current software development process.This paper puts forward a variant of the PageRank algorithm to build...With the rise of open-source software,the social development paradigm occupies an indispensable position in the current software development process.This paper puts forward a variant of the PageRank algorithm to build the importance assessment model,which provides quantifiable importance assessment metrics for new Java projects based on Java open-source projects or components.The critical point of the model is to use crawlers to obtain relevant information about Java open-source projects in the GitHub open-source community to build a domain knowledge graph.According to the three dimensions of the Java open-source project’s project influence,project activity and project popularity,the project is measured.A modified PageRank algorithm is proposed to construct the importance evaluation model.Thereby providing quantifiable importance evaluation indicators for new Java projects based on or components of Java open-source projects.This article evaluates the importance of 4512 Java open-source projects obtained on GitHub and has a good effect.展开更多
We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This s...We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.展开更多
Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginner...Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginners,opensource codes are undoubtedly the best alternative to learning TO,which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method.In this paper,we present a summary of various open-source codes and related literature on TO methods,including solid isotropic material with penalization(SIMP),evolutionary method,level set method(LSM),moving morphable components/voids(MMC/MMV)methods,multiscale topology optimization method,etc.Simultaneously,we classify the codes into five levels,fromeasy to difficult,depending on their difficulty,so that beginners can get started and understand the form of code implementation more quickly.展开更多
Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can b...Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can be time-consuming and labor-intensive, resulting in data being collected at a low frequency, while automating the data-collection process can reduce labor requirements and increase the frequency of measurements, but at the cost of added expense of electronic data-collecting instrumentation. Rapid advances in electronic technologies have resulted in a variety of new and inexpensive sensing, monitoring, and control capabilities which offer opportunities for implementation in agricultural and natural-resource research applications. An Open Source Hardware project called Arduino consists of a programmable microcontroller development platform, expansion capability through add-on boards, and a programming development environment for creating custom microcontroller software. All circuit-board and electronic component specifications, as well as the programming software, are open-source and freely available for anyone to use or modify. Inexpensive sensors and the Arduino development platform were used to develop several inexpensive, automated sensing and datalogging systems for use in agricultural and natural-resources related research projects. Systems were developed and implemented to monitor soil-moisture status of field crops for irrigation scheduling and crop-water use studies, to measure daily evaporation-pan water levels for quantifying evaporative demand, and to monitor environmental parameters under forested conditions. These studies demonstrate the usefulness of automated measurements, and offer guidance for other researchers in developing inexpensive sensing and monitoring systems to further their research.展开更多
Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this s...Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this strain,we have designed and tested the accessible low-barrier in vivo-validated economical ventilator(ALIVE Vent),a COVID-19-inspired,cost-effective,open-source,in vivo-validated solution made from commercially available components.The ALIVE Vent operates using compressed oxygen and air to drive inspiration,while two solenoid valves ensure one-way flow and precise cycle timing.The device was functionally tested and profiled using a variable resistance and compliance artificial lung and validated in anesthetized large animals.Our functional test results revealed its effective operation under a wide variety of ventilation conditions defined by the American Association of Respiratory Care guidelines for ventilator stockpiling.The large animal test showed that our ventilator performed similarly if not better than a standard ventilator in maintaining optimal ventilation status.The FiO2,respiratory rate,inspiratory to expiratory time ratio,positive-end expiratory pressure,and peak inspiratory pressure were successfully maintained within normal,clinically validated ranges,and the animals were recovered without any complications.In regions with limited access to ventilators,the ALIVE Vent can help alleviate shortages,and we have ensured that all used materials are publicly available.While this pandemic has elucidated enormous global inequalities in healthcare,innovative,cost-effective solutions aimed at reducing socio-economic barriers,such as the ALIVE Vent,can help enable access to prompt healthcare and life saving technology on a global scale and beyond COVID-19.展开更多
In today’s society with advanced Internet,the amount of information increases dramatically with each passing day,which leads to increasingly complex processes of open-source intelligence.Therefore,it is more importan...In today’s society with advanced Internet,the amount of information increases dramatically with each passing day,which leads to increasingly complex processes of open-source intelligence.Therefore,it is more important to rationalize the operation mode and improve the operation efficiency of open-source intelligence under the premise of satisfying users’needs.This paper focuses on the simulation study of the process system of opensource intelligence from the user’s perspective.First,the basic concept and development status of open-source intelligence are introduced in details.Second,six existing intelligence operation process models are summarized and their advantages and disadvantages are compared in focus.Based on users’preference,the open-source intelligence system simulation theory model is constructed from four aspects:intelligence collection,intelligence processing,intelligence analysis,and intelligence delivery.Meanwhile,the dynamics model of the open-source intelligence process system is constructed based on the open-source intelligence system simulation theoretical model,which specifically includes five parts:determination of system boundary,construction of causal loop diagram,construction of stock flow diagram,writing ofmathematical equations,and system sensitivity test.Finally,the system simulation results were analyzed.It was found that improving the system of intelligence agencies,opening up government affairs,improving the professional level of intelligence personnel,strengthening the communication and cooperation among personnel of various intelligence departments,and expressing intelligence products through diverse forms can effectively improve the operational efficiency of the open-source intelligence process system.展开更多
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse...Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.展开更多
Surface albedo is defined as the ratio of incident and reflected solar irradiance and describes the ability of a surface to reflect, rather than absorb incident solar shortwave radiation. It is thus a crucial paramete...Surface albedo is defined as the ratio of incident and reflected solar irradiance and describes the ability of a surface to reflect, rather than absorb incident solar shortwave radiation. It is thus a crucial parameter in the climate system, particularly in the polar oceans. Sea ice albedo is a main driver for light transmission into the polar oceans and thus has a high impact on ocean warming, ice melting and marine primary production. During spring and summer, sea ice albedo can exhibit a significant spatial variability caused by meltwater accumulations on the ice. While complex and expensive solutions for albedo measurements are already available, we want to present a simple open-source design that allows for affordable mapping of spatially varying surface albedo on sea ice and beyond. Our solution is based on off-the-shelf components, such as an Arduino microcontroller integrating affordable light sensors, a GPS unit, data recording on memory card and data display into a simple field strengthened unit. We provide example data from two Arctic field deployments showing the capabilities and limitations of this system.展开更多
Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate model...Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6.展开更多
Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and ...Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment,with advantages such as accuracy,comfort of use,cost effectiveness,and embedded computation capabilities to recognise,store,process,and transmit time series data.In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave(SAW)platform(Apnoea-Pi)to monitor and recognise apnoea in patients.The platform is based on a thin-film SAW device using bimorph ZnO and Al structures,including those fabricated as Al foils or plates,to achieve breath tracking based on humidity and temperature changes.We applied open-source electronics and provided embedded computing characteristics for signal processing,data recognition,storage,and transmission of breath signals.We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes.This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.展开更多
There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source ...There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source geospatial resources has sparked development of web-based spatial applications to address multidisciplinary issues with spatial dimensions. This paper presents the integration of open-source geospatial tools and web technology to visualize and interact with spatial data using web browser. The goal of this paper is to implement a prototype system for web-based mapping by providing step-by-step instructions in order to encourage the eager developers and interested readers to publish their maps on the web with no prior technical experience in map servers. The implementation of mapping prototype shows the utilization of open-source geospatial tools which results in a rapid implementation with minimal or no software input cost.展开更多
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord...Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.展开更多
Open-wheeled race car aerodynamics is unquestionably challenging insofar as it involves many physical phenomena,such as slender and blunt body aerodynamics,ground effect,vortex management and interaction between diffe...Open-wheeled race car aerodynamics is unquestionably challenging insofar as it involves many physical phenomena,such as slender and blunt body aerodynamics,ground effect,vortex management and interaction between different sophisticated aero devices.In the current work,a 2017 F1 car aerodynamics has been investigated from a numerical point of view by using an open-source code.The vehicle project was developed by PERRINN(Copyright.2011—Present PERRINN),an engineering community founded by Nicolas Perrin in 2011.The racing car performance is quantitatively evaluated in terms of drag,downforce,efficiency and front balance.The goals of the present CFD(computational fluid dynamics)-based research are the following:analyzing the capabilities of the open-source software OpenFOAM in dealing with complex meshes and external aerodynamics calculation,and developing a reliable workflow from CAD(computer aided design)model to the post-processing of the results,in order to meet production demands.展开更多
The use of open-source data and tools in disaster exposure mapping is presented in this paper. Disaster exposure is a collection of the element at risk to potential loss. Gampaha divisional secretariat (DS) is a study...The use of open-source data and tools in disaster exposure mapping is presented in this paper. Disaster exposure is a collection of the element at risk to potential loss. Gampaha divisional secretariat (DS) is a study area laid on the lower part of the Attanagalu Oya river basin. As the geospatial tools, OpenStreetMap (OSM), Java OpenStreetMap (JOSM), QGIS, GPS Essentials, and Open Map Kit (OMK) are used. The elements of disaster exposure, including the number of people or types of assets, are surveyed and inventoried using the OSM platforms. Local, national, and international agencies produce and evaluate the data. The study developed spatial data for building footprints of 165,000 households, street lengths of 2300 km, hospital units of 16, and utility units of 2300. This could overcome the main challenges of exposure mapping in the area. The procedure developed in the exposure mapping can be used in a data-sparse environment. Exposure mapping is generally used to estimate the impact of hazards or disasters, which are essential in effective disaster management. How are there still remaining challenges in disaster exposure mapping such as less awareness about the mapping procedure, lack of government support, internet access, hardware, and inability to understand the value of exposure mapping?展开更多
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sus...This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.展开更多
We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on t...We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.展开更多
The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on...The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.展开更多
基金This work was supported by the National Social Science Foundation(NSSF)Research on intelligent recommendation of multi-modal resources for children’s graded reading in smart library(22BTQ033)the Science and Technology Research and Development Program Project of China railway group limited(Project No.2021-Special-08).
文摘With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS project network,namely an Open-Source Software ECOsystem(OSSECO).Unfortunately,not all OS projects in the open-source ecosystem can be healthy and stable in the long term,and more projects will go from active to inactive and gradually die.In a tightly connected ecosystem,the death of one project can potentially cause the collapse of the entire ecosystem network.How can we effectively prevent such situations from happening?In this paper,we first identify the basic project characteristics that affect the survival of OS projects at both project and ecosystem levels through the proportional hazards model.Then,we utilize graph convolutional networks based on the ecosystem network to extract the ecosystem environment characteristics of OS projects.Finally,we fuse basic project characteristics and environmental project characteristics and construct a Hybrid Structured Prediction Model(HSPM)to predict the OS project survival state.The experimental results show that HSPM significantly improved compared to the traditional prediction model.Our work can substantially assist OS project managers in maintaining their projects’health.It can also provide an essential reference for developers when choosing the right open-source project for their production activities.
基金This work has been supported by the National Science Foundation of China Grant No.61762092“Dynamic multi-objective requirement optimization based on transfer learning,”and the Open Foundation of the Key Laboratory in Software Engineering of Yunnan Province,Grant No.2017SE204+1 种基金“Research on extracting software feature models using transfer learning,”and the National Science Foundation of China Grant No.61762089“The key research of high order tensor decomposition in a distributed environment”.
文摘With the rise of open-source software,the social development paradigm occupies an indispensable position in the current software development process.This paper puts forward a variant of the PageRank algorithm to build the importance assessment model,which provides quantifiable importance assessment metrics for new Java projects based on Java open-source projects or components.The critical point of the model is to use crawlers to obtain relevant information about Java open-source projects in the GitHub open-source community to build a domain knowledge graph.According to the three dimensions of the Java open-source project’s project influence,project activity and project popularity,the project is measured.A modified PageRank algorithm is proposed to construct the importance evaluation model.Thereby providing quantifiable importance evaluation indicators for new Java projects based on or components of Java open-source projects.This article evaluates the importance of 4512 Java open-source projects obtained on GitHub and has a good effect.
文摘We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.
基金supported by the National Key R&D Program of China[Grant Number 2020YFB1708300]the National Natural Science Foundation of China[Grant Number 52075184].
文摘Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginners,opensource codes are undoubtedly the best alternative to learning TO,which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method.In this paper,we present a summary of various open-source codes and related literature on TO methods,including solid isotropic material with penalization(SIMP),evolutionary method,level set method(LSM),moving morphable components/voids(MMC/MMV)methods,multiscale topology optimization method,etc.Simultaneously,we classify the codes into five levels,fromeasy to difficult,depending on their difficulty,so that beginners can get started and understand the form of code implementation more quickly.
文摘Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can be time-consuming and labor-intensive, resulting in data being collected at a low frequency, while automating the data-collection process can reduce labor requirements and increase the frequency of measurements, but at the cost of added expense of electronic data-collecting instrumentation. Rapid advances in electronic technologies have resulted in a variety of new and inexpensive sensing, monitoring, and control capabilities which offer opportunities for implementation in agricultural and natural-resource research applications. An Open Source Hardware project called Arduino consists of a programmable microcontroller development platform, expansion capability through add-on boards, and a programming development environment for creating custom microcontroller software. All circuit-board and electronic component specifications, as well as the programming software, are open-source and freely available for anyone to use or modify. Inexpensive sensors and the Arduino development platform were used to develop several inexpensive, automated sensing and datalogging systems for use in agricultural and natural-resources related research projects. Systems were developed and implemented to monitor soil-moisture status of field crops for irrigation scheduling and crop-water use studies, to measure daily evaporation-pan water levels for quantifying evaporative demand, and to monitor environmental parameters under forested conditions. These studies demonstrate the usefulness of automated measurements, and offer guidance for other researchers in developing inexpensive sensing and monitoring systems to further their research.
基金the National Institutes of Health(NIH R01 HL089315-01 and NIH R01 HL152155,YJW)the Thoracic Surgery Foundation Resident Research Fellowship(YZ)the National Science Foundation Graduate Research Fellowship Program(AMI).
文摘Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this strain,we have designed and tested the accessible low-barrier in vivo-validated economical ventilator(ALIVE Vent),a COVID-19-inspired,cost-effective,open-source,in vivo-validated solution made from commercially available components.The ALIVE Vent operates using compressed oxygen and air to drive inspiration,while two solenoid valves ensure one-way flow and precise cycle timing.The device was functionally tested and profiled using a variable resistance and compliance artificial lung and validated in anesthetized large animals.Our functional test results revealed its effective operation under a wide variety of ventilation conditions defined by the American Association of Respiratory Care guidelines for ventilator stockpiling.The large animal test showed that our ventilator performed similarly if not better than a standard ventilator in maintaining optimal ventilation status.The FiO2,respiratory rate,inspiratory to expiratory time ratio,positive-end expiratory pressure,and peak inspiratory pressure were successfully maintained within normal,clinically validated ranges,and the animals were recovered without any complications.In regions with limited access to ventilators,the ALIVE Vent can help alleviate shortages,and we have ensured that all used materials are publicly available.While this pandemic has elucidated enormous global inequalities in healthcare,innovative,cost-effective solutions aimed at reducing socio-economic barriers,such as the ALIVE Vent,can help enable access to prompt healthcare and life saving technology on a global scale and beyond COVID-19.
基金supported by the National Social Science Foundation of China under the project“Research on the mechanism of developing and utilizing domestic and foreign open-source intelligence under product-oriented thinking(20BTQ049)”.
文摘In today’s society with advanced Internet,the amount of information increases dramatically with each passing day,which leads to increasingly complex processes of open-source intelligence.Therefore,it is more important to rationalize the operation mode and improve the operation efficiency of open-source intelligence under the premise of satisfying users’needs.This paper focuses on the simulation study of the process system of opensource intelligence from the user’s perspective.First,the basic concept and development status of open-source intelligence are introduced in details.Second,six existing intelligence operation process models are summarized and their advantages and disadvantages are compared in focus.Based on users’preference,the open-source intelligence system simulation theory model is constructed from four aspects:intelligence collection,intelligence processing,intelligence analysis,and intelligence delivery.Meanwhile,the dynamics model of the open-source intelligence process system is constructed based on the open-source intelligence system simulation theoretical model,which specifically includes five parts:determination of system boundary,construction of causal loop diagram,construction of stock flow diagram,writing ofmathematical equations,and system sensitivity test.Finally,the system simulation results were analyzed.It was found that improving the system of intelligence agencies,opening up government affairs,improving the professional level of intelligence personnel,strengthening the communication and cooperation among personnel of various intelligence departments,and expressing intelligence products through diverse forms can effectively improve the operational efficiency of the open-source intelligence process system.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the Chinese Academy of Sciences[grant number 060GJHZ2023079GC].
文摘Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.
基金the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar und Meeresforschungthe Helmholtz infrastructure initiative “Frontiers in Arctic marine Monitoring” (FRAM) for funding this projectfunded by a Sentinel North Postdoctoral Research Fellowship at Université Laval, Canada
文摘Surface albedo is defined as the ratio of incident and reflected solar irradiance and describes the ability of a surface to reflect, rather than absorb incident solar shortwave radiation. It is thus a crucial parameter in the climate system, particularly in the polar oceans. Sea ice albedo is a main driver for light transmission into the polar oceans and thus has a high impact on ocean warming, ice melting and marine primary production. During spring and summer, sea ice albedo can exhibit a significant spatial variability caused by meltwater accumulations on the ice. While complex and expensive solutions for albedo measurements are already available, we want to present a simple open-source design that allows for affordable mapping of spatially varying surface albedo on sea ice and beyond. Our solution is based on off-the-shelf components, such as an Arduino microcontroller integrating affordable light sensors, a GPS unit, data recording on memory card and data display into a simple field strengthened unit. We provide example data from two Arctic field deployments showing the capabilities and limitations of this system.
基金funding from the NFR COMBINED (Grant No.328935)The BCPU hosted YZ visit to University of Bergen (Trond Mohn Foundation Grant No.BFS2018TMT01)+2 种基金supported by the National Key Research and Development Program of China (Grant No.2023YFA0805101)the National Natural Science Foundation of China (Grant Nos.42376250 and 41731177)a China Scholarship Council fellowship and the UTFORSK Partnership Program (CONNECTED UTF-2016-long-term/10030)。
文摘Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6.
基金financially supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/P018998/1the UK Fluidic Network Special Interest Group of Acoustofluidics (EP/N032861/1).
文摘Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment,with advantages such as accuracy,comfort of use,cost effectiveness,and embedded computation capabilities to recognise,store,process,and transmit time series data.In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave(SAW)platform(Apnoea-Pi)to monitor and recognise apnoea in patients.The platform is based on a thin-film SAW device using bimorph ZnO and Al structures,including those fabricated as Al foils or plates,to achieve breath tracking based on humidity and temperature changes.We applied open-source electronics and provided embedded computing characteristics for signal processing,data recognition,storage,and transmission of breath signals.We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes.This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.
文摘There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source geospatial resources has sparked development of web-based spatial applications to address multidisciplinary issues with spatial dimensions. This paper presents the integration of open-source geospatial tools and web technology to visualize and interact with spatial data using web browser. The goal of this paper is to implement a prototype system for web-based mapping by providing step-by-step instructions in order to encourage the eager developers and interested readers to publish their maps on the web with no prior technical experience in map servers. The implementation of mapping prototype shows the utilization of open-source geospatial tools which results in a rapid implementation with minimal or no software input cost.
基金supported by Guangdong Provincial Basic and Applied Basic Research Fund,No.2021A1515011299(to KT)。
文摘Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
文摘Open-wheeled race car aerodynamics is unquestionably challenging insofar as it involves many physical phenomena,such as slender and blunt body aerodynamics,ground effect,vortex management and interaction between different sophisticated aero devices.In the current work,a 2017 F1 car aerodynamics has been investigated from a numerical point of view by using an open-source code.The vehicle project was developed by PERRINN(Copyright.2011—Present PERRINN),an engineering community founded by Nicolas Perrin in 2011.The racing car performance is quantitatively evaluated in terms of drag,downforce,efficiency and front balance.The goals of the present CFD(computational fluid dynamics)-based research are the following:analyzing the capabilities of the open-source software OpenFOAM in dealing with complex meshes and external aerodynamics calculation,and developing a reliable workflow from CAD(computer aided design)model to the post-processing of the results,in order to meet production demands.
文摘The use of open-source data and tools in disaster exposure mapping is presented in this paper. Disaster exposure is a collection of the element at risk to potential loss. Gampaha divisional secretariat (DS) is a study area laid on the lower part of the Attanagalu Oya river basin. As the geospatial tools, OpenStreetMap (OSM), Java OpenStreetMap (JOSM), QGIS, GPS Essentials, and Open Map Kit (OMK) are used. The elements of disaster exposure, including the number of people or types of assets, are surveyed and inventoried using the OSM platforms. Local, national, and international agencies produce and evaluate the data. The study developed spatial data for building footprints of 165,000 households, street lengths of 2300 km, hospital units of 16, and utility units of 2300. This could overcome the main challenges of exposure mapping in the area. The procedure developed in the exposure mapping can be used in a data-sparse environment. Exposure mapping is generally used to estimate the impact of hazards or disasters, which are essential in effective disaster management. How are there still remaining challenges in disaster exposure mapping such as less awareness about the mapping procedure, lack of government support, internet access, hardware, and inability to understand the value of exposure mapping?
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
基金the Nord Forsk-funded Nordic Centre of Excellence project (Award 766654) Arctic Climate Predictions: Pathways to Resilient,Sustainable Societies (ARCPATH)National Science Foundation Award 212786 Synthesizing Historical Sea-Ice Records to Constrain and Understand Great Sea-Ice Anomalies (ICEHIST) PI Martin MILES,Co-PI Astrid OGILVIE+12 种基金American-Scandinavian Foundation Award Whales and Ice: Marine-mammal subsistence use in times of famine in Iceland ca.A.D.1600–1900 (ICEWHALE),PI Astrid OGILVIESocial Sciences and Humanities Research Council of Canada Award 435-2018-0194 Northern Knowledge for Resilience,Sustainable Environments and Adaptation in Coastal Communities (NORSEACC),PI Leslie KING,Co-PI,Astrid OGILVIEToward Just,Ethical and Sustainable Arctic Economies,Environments and Societies (JUSTNORTH).EU H2020 (https://www.svs.is/en/ projects/ongoing-projects/justnorth-2020-2023)INTO THE OCEANIC by Elizabeth OGILVIE and Robert PAGE (https://www.intotheo ceanic.org/introduction)Proxy Assimilation for Reconstructing Climate and Improving Model (PARCIM) funded by the Bjerknes Centre for Climate Research,led by Fran?ois COUNILLON,PI Noel KEENLYSIDEAccelerated Arctic and Tibetan Plateau Warming: Processes and Combined Impact on Eurasian Climate (COMBINED),Research Council of Norway (Grant No.328935),Led by Noel KEENLYSIDEArven etter Nansen programme (the Nansen Legacy Project),Research Council of Norway (Grant No.276730),PI Noel KEENLYSIDEBjerknes Climate Prediction Unit,funded by Trond Mohn Foundation (Grant BFS2018TMT01) Centre for Research-based Innovation Climate Futures,Research Council of Norway (Grant No.309562),PIs Noel KEENLYSIDE,Francois COUNILLONDeveloping and Advancing Seasonal Predictability of Arctic Sea Ice (4ICE),Research Council of Norway (Grant No.254765),PI Francois COUNILLONTropical and South Atlantic Climate-Based Marine Ecosystem Prediction for Sustainable Management (TRIATLAS) European Union Horizon 2020 (Grant No.817578),led by Noel KEENLYSIDE,PI Fran?ois COUNILLONImpetus4Change,European Union Horizon Europe (Grant No.101081555),PIs Noel KEENLYSIDE,Fran?ois COUNILLONLaboratory for Climate Predictability,Russian Megagrant funded by Ministry of Science and Higher Education of the Russian Federation (Agreement No.075-15-2021-577),led by Noel KEENLYSIDE,PI Segey GULEVRapid Arctic Environmental Changes: Implications for Well-Being,Resilience and Evolution of Arctic Communities (RACE),Belmont Forum (RCN Grant No.312017),PIs Sergey GULEV and Noel KEENLYSIDE。
文摘This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1603300 and 2022YFA1603200)the Science Challenge Project(Grant No.TZ2018005)in China+1 种基金the National Natural Science Foundation of China(Grant Nos.11805188 and 12175209)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD6-2022-1).
文摘We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.
基金supported by the National Natural Science Foundation of China(62176218,62176027)the Fundamental Research Funds for the Central Universities(XDJK2020TY003)the Funds for Chongqing Talent Plan(cstc2024ycjh-bgzxm0082)。
文摘The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.