This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf...This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.展开更多
This study is to understand the impact of operating condition, especially initial operation temperature (Tini) which is set in high temperature range, on the temperature profile of the interface between PEM (polyme...This study is to understand the impact of operating condition, especially initial operation temperature (Tini) which is set in high temperature range, on the temperature profile of the interface between PEM (polymer electrolyte membrane) and catalyst layer at the cathode (i.e., the reaction surface) in a single PEFC (polymer electrolyte fuel cell). A 1D multi-plate heat transfer model based on the temperature data of separator measured using thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (Treact). This study investigated the effects of flow rate, relative humidity and type of supply gas as well as Tini on the temperature distribution on reaction surface. The results obtained in 02 supply case show that, the temperature rise at the segments near the outlet of cell decreases with increasing Tini irrespective of relative humidity of supply gas (RH), while it is not seen in air supply case. Regarding the segments except near the outlet in 02 supply case, Treact - Tini increases with increasing Tini for 40% RH. The temperature distribution on reaction surface in 02 supply case is wider with increasing Tini as well as decreasing RH, though that in air supply case is relatively even.展开更多
This study is to understand the impact of operating condition, especially initial operation temperature (Tini) which is set in high temperature range, on the temperature profile of the interface between PEM (polyme...This study is to understand the impact of operating condition, especially initial operation temperature (Tini) which is set in high temperature range, on the temperature profile of the interface between PEM (polymer electrolyte membrane) and catalyst layer at the cathode (i.e., the reaction surface) in a single PEFC (polymer electrolyte fuel cell). A 1D multi-plate heat transfer model based on the temperature data of separator measured using thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (Treact). This study investigated the effects of Tini, flow rate and relative humidity of supply gas as well as thickness of PEM on the temperature distribution on reaction surface. As a result, the impact of flow rate of supply gas on the temperature distribution is not significant irrespective of relative humidity conditions as well as PEM type. When operated at high temperature, the temperature distribution is relatively flat in the case of thicker PEM (Nafion 115), while Treact rises from the inlet to the outlet large and the temperature distribution is wide in the case of thin PEM (Nafion 211) irrespective of relative humidity condition. Since the water transfer through PEM in the case of Nafion 211 is better than Nafion 115 due to thin PEM, the power generation is promoted along the gas flow with the aid of humidification by water produced from electrochemical reaction.展开更多
Abstract: The purpose of this study is to analyze the temperature distribution on the interface between the polymer electrolyte membrane and catalyst layer at the cathode in single cell of polymer electrolyte fuel ce...Abstract: The purpose of this study is to analyze the temperature distribution on the interface between the polymer electrolyte membrane and catalyst layer at the cathode in single cell of polymer electrolyte fuel cell when operated in elevated temperature range than usual. In this study, the interface between the polymer electrolyte membrane and catalyst layer at the cathode is named as reaction surface. This study has considered the 1D multi-plate heat transfer model estimating the temperature distribution on the reaction surface and verified with the 3D numerical simulation model solving many governing equations on the coupling phenomena of the polymer electrolyte fuel cell. The 3D numerical simulation model coverers a half size of actual cell including three straight parts and two turn-back corners, which can display the essential phenomena of single cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface have been investigated. Though the effect of flow rate of supply gas on temperature distribution on reaction surface has been small, low relative humidity of supply gas has caused higher temperature on the reaction surface compared to high relative humidity of the supply gas. The temperature rise of reaction surface from initial operation temperature has increased with the increasing in initial operation temperature of cell.展开更多
For improving the performance of stationary PEFC (polymer electrolyte fuel cell) system, the cell operating temperature up to 90℃ will be preferred in Japan during the period from 2020 to 2030. To understand the op...For improving the performance of stationary PEFC (polymer electrolyte fuel cell) system, the cell operating temperature up to 90℃ will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat and mass transfer analysis is required. The purpose of this study is to analyze the impact of relative humidity of supply gas on temperature distribution on the backside of separator in single ceil of PEFC using Nation membrane at higher temperature e.g. 90℃. The in-plane temperature distribution when power was being generated was measured using thermograph with various relative humidity of supply gases. It was found that the in-plane temperature distribution at the anode was more even than that at the cathode irrespective of the relative humidity of supply gas at the anode and the cathode. The temperature elevated along gas flow through the gas channel at the cathode irrespective of relative humidity of supply gas at the anode and the cathode. The in-plane temperature distribution at the cathode was narrower with the increase in Tini irrespective of relative humidity of supply gas at the cathode, while it was not observed when changing the relative humidity of supply gas at the anode. When the relative humidity of supply gas at cathode decreased, the in-plane temperature distribution at the anode was wider compared to decreasing the relative humidity of supply gas at the anode. The study concluded that the impact of relative humidity of supply gas at both anode and cathode had little impact on the in-plane temperature distribution at the cathode.展开更多
Purpose–This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor(BR)onboard the vehic...Purpose–This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor(BR)onboard the vehicle,which overcomes the vulnerability of having conventional temperature sensor.Design/methodology/approach–In this study,the energy model based sensorless estimation method is developed.By analyzing the structure and the convection dissipation process of the BR onboard the vehicle,the energy-based operational temperature model of the BR and its cooling domain is established.By adopting Newton’s law of cooling and the law of conservation of energy,the energy and temperature dynamic of the BR can be stated.To minimize the use of all kinds of sensors(including both thermal and electrical),a novel regenerative braking power calculation method is proposed,which involves only the voltage of DC traction network and the duty cycle of the chopping circuit;both of them are available for the traction control unit(TCU)of the vehicle.By utilizing a real-time iterative calculation and updating the parameter of the energy model,the operational temperature of the BR can be obtained and monitored in a sensorless manner.Findings–In this study,a sensorless estimation/monitoring method of the operational temperature of BR is proposed.The results show that it is possible to utilize the existing electrical sensors that is mandatory for the traction unit’s operation to estimate the operational temperature of BR,instead of adding dedicated thermal sensors.The results also validate the effectiveness of the proposal is acceptable for the engineering practical.Originality/value–The proposal of this study provides novel concepts for the sensorless operational temperature monitoring of BR onboard rolling stocks.The proposed method only involves quasi-global electrical variable and the internal control signal within the TCU.展开更多
Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit...Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.展开更多
This work falls within the context of reducing energy consumption in Côte d’Ivoire. As the building sector is one of the energy consumers worldwide, it could be a major source of energy savings. A major source o...This work falls within the context of reducing energy consumption in Côte d’Ivoire. As the building sector is one of the energy consumers worldwide, it could be a major source of energy savings. A major source of energy savings. With this in mind thermal comfort in buildings in Côte d’Ivoire (Abidjan) in order to determine (Abidjan) to determine thermal comfort conditions. To carry out study, measurement campaigns were carried out in various buildings. These measured parameters were used to calculate comfort indices such as PMV, PDD, SET and operating temperature. A correlation was then made between the PMV index and the operating temperature, then between the SET and the operating temperature to determine the thermoneutrality temperature and the different thermal comfort thermal comfort ranges. The PMV gave a thermoneutrality temperature of 24.87˚C in the rainy season and a thermoneutrality temperature of 25.15˚C during the dry season. In addition, the SET gave comfort ranges, with values ranging from 23.23˚C to 25.70˚C in the rainy season and 23.35˚C to 26.08˚C in the dry season. In addition, the acceptability predicted by the PDD showed that in the rainy season, the premises were more acceptable than in the dry season.展开更多
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenit...The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100~C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-HoUomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6. x 1015 (lnZ---35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.展开更多
Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu...Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu_(3)P)hybrids were rationally synthesized using a one-step carbonization method using pollen as the source material,acting as the sulfur host for LSBs.In the hybrid,polar Cu_(3)P can markedly inhibit the“shuttle effect”by regulating the adsorption ability toward polysulfides,as confirmed by theoretical calculations and experimental tests.As an example,the camellia pollen porous carbon(CPC)/Cu_(3)P/S electrode shows a high capacity of 1205.6 mAh g^(−1) at 0.1 C,an ultralow capacity decay rate of 0.038%per cycle after 1000 cycles at 1 C,and a rather high initial Coulombic efficiency of 98.5%.The CPC/Cu_(3)P LSBs can work well at high temperatures,having a high capacity of 545.9 mAh g^(−1) at 1 C even at 150℃.The strategy of the PC/Cu_(3)P hybrid proposed in this study is expected to be an ideal cathode for ultrastable high-temperature LSBs.We believe that this strategy is universal and worthy of in-depth development for the next generation energy storage devices.展开更多
Here in this paper,we report a room-temperature operating infrared photodetector based on the interband transition of an In As Sb/Ga Sb quantum well.The interband transition energy of 5-nm thick In As(0.91)Sb(0.09...Here in this paper,we report a room-temperature operating infrared photodetector based on the interband transition of an In As Sb/Ga Sb quantum well.The interband transition energy of 5-nm thick In As(0.91)Sb(0.09) embedded in the Ga Sb barrier is calculated to be 0.53 e V(2.35μm),which makes the absorption range of In As Sb cover an entire range from short-wavelength infrared to long-wavelength infrared spectrum.The fabricated photodetector exhibits a narrow response range from 2.0μm to 2.3μm with a peak around 2.1μm at 300 K.The peak responsivity is 0.4 A/W under-500-m Vapplied bias voltage,corresponding to a peak quantum efficiency of 23.8%in the case without any anti-reflection coating.At 300 K,the photodetector exhibits a dark current density of 6.05×10^-3A/cm^2 under-400-m V applied bias voltage and 3.25×10^-5A/cm^2 under zero,separately.The peak detectivity is 6.91×10^10cm·Hz^1/2/W under zero bias voltage at 300 K.展开更多
According to the New Energy and Industry Technology Development Organization(NEDO)road map 2017 of Japan,polymer electrolyte fuel cell(PEFC)system is required to be operated at 90°C and 100°C for stationary ...According to the New Energy and Industry Technology Development Organization(NEDO)road map 2017 of Japan,polymer electrolyte fuel cell(PEFC)system is required to be operated at 90°C and 100°C for stationary and mobility applications,respectively.However,the general PEFC,which has Nafion membrane is operated within the temperature range between 60°C and 80°C.It is important to understand the temperature distribution in a PEFC cell for analyzing performance on working life span of PEFC.This study focuses on the combination of thin polymer electrolyte membrane(PEM)and thin gas diffusion layer(GDL)to improve power generation performance under relatively higher temperature operation conditions.In addition,this study also focuses on effect of micro porous layer(MPL),which can promote the mass transfer,over temperature distribution.The key aim of this study is to analyze impact of MPL of temperature distribution on the reaction surface(Treact)of a cell of PEFC using thin PEM and GDL with variations of H2 and O2 supply flow rates and their relative humidity(RH)with changing the initial operating temperature(Tini)from 80°C to 100°C.As a result,the distribution of Treact without MPL,for anode and cathode at 80%RH and Tini at 80°C and 90°C,is higher than normal conditions.There is a small difference in temperature distribution among different RH conditions with MPL.The distributions of Treact are relatively flat and almost the same among different RH conditions without MPL at Tini=100°C,while the distributions of Treact with MPL are almost the same among different RH conditions.This study is revealed that more even temperature distribution and higher power generation performance can be obtained in the case without MPL compared to the case with MPL.展开更多
Bi3.15Nd0.85Ti3O12 (BNdT) films were deposited on Pt/Ti/SiO2/Si(100) substrates by a metal organic decomposition (MOD)method, and annealed by a rapid thermal annealing process in oxygen atmosphere and in air, respecti...Bi3.15Nd0.85Ti3O12 (BNdT) films were deposited on Pt/Ti/SiO2/Si(100) substrates by a metal organic decomposition (MOD)method, and annealed by a rapid thermal annealing process in oxygen atmosphere and in air, respectively. The crystalline structuresand morphologies of BNdT films were characterized by X-ray diffraction and field-emission scanning electron microscopy, and thegas sensing properties were measured by monitoring its resistance at different gas concentrations. The results indicate that the BNdTfilms annealed in air are of porous microstructure and rough surface, and the annealing atmosphere has great influence on gas sensingproperties. At an operating temperature of 100 °C, the BNdT films annealed in air are of high response value to 1×10?6 gaseousethanol, and the detecting limit is as low as 0.1×10?6. The corresponding response and recovery time is about 10 and 6 s, respectively.The results can offer useful guidelines for fabricating high performance ethanol sensors.展开更多
The operating temperature is a critical factor affecting the performances of photovoltaic(PV)modules.In this work,relevant models are proposed for the prediction of this operating temperature using data(ambient temper...The operating temperature is a critical factor affecting the performances of photovoltaic(PV)modules.In this work,relevant models are proposed for the prediction of this operating temperature using data(ambient temperature and solar irradiance)based on real measurements conducted in the tropical region.For each weather condition(categorized according to irradiance and temperature levels),the temperatures of the PV modules obtained using the proposed approach is compared with the corresponding experimentally measured value.The results show that the proposed models have a smaller Root Mean Squared Error than other models developed in the literature for all weather conditions,which confirms the reliability of the proposed framework.展开更多
Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating t...Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.展开更多
A summer-time shipboard meteorological survey is described in the Northwest Indian Ocean. Shipboard observations are used to evaluate a satellite-based sea surface temperature(SST), and then find the main factors th...A summer-time shipboard meteorological survey is described in the Northwest Indian Ocean. Shipboard observations are used to evaluate a satellite-based sea surface temperature(SST), and then find the main factors that are highly correlated with errors. Two satellite data, the first is remote sensing product of a microwave, which is a Tropical Rainfall Measuring Mission Microwave Imager(TMI), and the second is merged data from the microwave and infrared satellite as well as drifter observations, which is Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA). The results reveal that the daily mean SST of merged data has much lower bias and root mean square error as compared with that from microwave products. Therefore the results support the necessary of the merging infrared and drifter SST with a microwave satellite for improving the quality of the SST. Furthermore, the correlation coefficient between an SST error and meteorological parameters, which include a wind speed, an air temperature, a relative humidity, an air pressure, and a visibility. The results show that the wind speed has the largest correlation coefficient with the TMI SST error. However, the air temperature is the most important factor to the OSTIA SST error. Meanwhile,the relative humidity shows the high correlation with the SST error for the OSTIA product.展开更多
Solid/solid interface is the major challenge for high-performance solid-state batteries.Solid electrolytes(SEs)play a crucial role in the fabrication of effective interfaces in solid-state batteries.Herein,the electro...Solid/solid interface is the major challenge for high-performance solid-state batteries.Solid electrolytes(SEs)play a crucial role in the fabrication of effective interfaces in solid-state batteries.Herein,the electrolyte distribution with varied particle sizes is tuned to construct solid-state batteries with excellent performance at different operating temperatures.Solid-state batteries with the configuration S/L(small-sized SE in composite cathode and large-sized SE in electrolyte layer)show the best performance at room temperature(168 mA h g^(−1) at 0.2 C,retention of 99%,100 cycles)and−20°C(89 mA h g^(−1) at 0.05 C),while the configuration S/S displays better performance at elevated temperature.The superior performance of S/L battery is associated with faster lithium-ion dynamics due to the better solid/solid interface between active materials and electrolytes.Moreover,the inferior performance at 60℃is caused by the formation of voids and cracks in the electrolyte layer during cycling.In contrast,the S/S battery delivers superior performance at elevated operating temperature because of the integrated structure.This work confirms that tailoring electrolyte size has significant effect on fabricating all-climate solid-state batteries.展开更多
In this paper,we demonstrate nBn InAs/InAsSb type II superlattice(T2SL)photodetectors with AlAsSb as the barrier that targets mid-wavelength infrared(MWIR)detection.To improve operating temperature and suppress dark c...In this paper,we demonstrate nBn InAs/InAsSb type II superlattice(T2SL)photodetectors with AlAsSb as the barrier that targets mid-wavelength infrared(MWIR)detection.To improve operating temperature and suppress dark current,a specific Sb soaking technique was employed to improve the interface abruptness of the superlattice with device passivation using a SiO_(2) layer.These result in ultralow dark current density of 6.28×10^(-6)A/cm^(2)and 0.31 A/cm^(2)under-600 mV at 97 K and297 K,respectively,which is lower than most reported InAs/InAsSb-based MWIR photodetectors.Corresponding resistance area product values of 3.20×10^(4)Ω·cm^(2)and 1.32Ω·cm^(2)were obtained at 97 K and 297 K.A peak responsivity of 0.39 A/W with a cutoff wavelength around 5.5μm and a peak detectivity of 2.1×10^(9)cm·Hz^(1/2)/W were obtained at a high operating temperature up to 237 K.展开更多
FeS_(2) shows significant potential as cathode material for all-solid-state lithium batteries(ASSLBs)due to its high theoretical specific capacity,low cost,and environmental friendliness.However,the poor ion/electron ...FeS_(2) shows significant potential as cathode material for all-solid-state lithium batteries(ASSLBs)due to its high theoretical specific capacity,low cost,and environmental friendliness.However,the poor ion/electron conductivity and large volume variation effect of FeS_(2) inhibit its practical applications.Here,the influence of particle size of FeS_(2) on the corresponding sulfide-based solid-state batteries is carefully investigated by tuning FeS_(2) size.Moreover,low operating temperature is chosen to mitigate the large volume changes during cycling in the battery.S-FeS_(2) with smaller particle sizes delivers superior electrochemical performances than that of the larger L-FeS_(2) in Li_(5.5)PS_(4.5)Cl_(1.5)-based ASSLBs under different operating temperatures.S-FeS_(2) shows stable discharge capacities during 50 cycles with a current density of 0.1 m A/cm^(2)under -20℃.When the current density rises to 1.0 m A/cm^(2),it delivers an initial discharge capacity of 146.9 m Ah/g and maintains 63% of the capacity after 100 cycles.This work contributes to constructing ASSLBs enables excellent electrochemical performances under extreme operating temperatures.展开更多
文摘This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.
文摘This study is to understand the impact of operating condition, especially initial operation temperature (Tini) which is set in high temperature range, on the temperature profile of the interface between PEM (polymer electrolyte membrane) and catalyst layer at the cathode (i.e., the reaction surface) in a single PEFC (polymer electrolyte fuel cell). A 1D multi-plate heat transfer model based on the temperature data of separator measured using thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (Treact). This study investigated the effects of flow rate, relative humidity and type of supply gas as well as Tini on the temperature distribution on reaction surface. The results obtained in 02 supply case show that, the temperature rise at the segments near the outlet of cell decreases with increasing Tini irrespective of relative humidity of supply gas (RH), while it is not seen in air supply case. Regarding the segments except near the outlet in 02 supply case, Treact - Tini increases with increasing Tini for 40% RH. The temperature distribution on reaction surface in 02 supply case is wider with increasing Tini as well as decreasing RH, though that in air supply case is relatively even.
文摘This study is to understand the impact of operating condition, especially initial operation temperature (Tini) which is set in high temperature range, on the temperature profile of the interface between PEM (polymer electrolyte membrane) and catalyst layer at the cathode (i.e., the reaction surface) in a single PEFC (polymer electrolyte fuel cell). A 1D multi-plate heat transfer model based on the temperature data of separator measured using thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (Treact). This study investigated the effects of Tini, flow rate and relative humidity of supply gas as well as thickness of PEM on the temperature distribution on reaction surface. As a result, the impact of flow rate of supply gas on the temperature distribution is not significant irrespective of relative humidity conditions as well as PEM type. When operated at high temperature, the temperature distribution is relatively flat in the case of thicker PEM (Nafion 115), while Treact rises from the inlet to the outlet large and the temperature distribution is wide in the case of thin PEM (Nafion 211) irrespective of relative humidity condition. Since the water transfer through PEM in the case of Nafion 211 is better than Nafion 115 due to thin PEM, the power generation is promoted along the gas flow with the aid of humidification by water produced from electrochemical reaction.
文摘Abstract: The purpose of this study is to analyze the temperature distribution on the interface between the polymer electrolyte membrane and catalyst layer at the cathode in single cell of polymer electrolyte fuel cell when operated in elevated temperature range than usual. In this study, the interface between the polymer electrolyte membrane and catalyst layer at the cathode is named as reaction surface. This study has considered the 1D multi-plate heat transfer model estimating the temperature distribution on the reaction surface and verified with the 3D numerical simulation model solving many governing equations on the coupling phenomena of the polymer electrolyte fuel cell. The 3D numerical simulation model coverers a half size of actual cell including three straight parts and two turn-back corners, which can display the essential phenomena of single cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface have been investigated. Though the effect of flow rate of supply gas on temperature distribution on reaction surface has been small, low relative humidity of supply gas has caused higher temperature on the reaction surface compared to high relative humidity of the supply gas. The temperature rise of reaction surface from initial operation temperature has increased with the increasing in initial operation temperature of cell.
文摘For improving the performance of stationary PEFC (polymer electrolyte fuel cell) system, the cell operating temperature up to 90℃ will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat and mass transfer analysis is required. The purpose of this study is to analyze the impact of relative humidity of supply gas on temperature distribution on the backside of separator in single ceil of PEFC using Nation membrane at higher temperature e.g. 90℃. The in-plane temperature distribution when power was being generated was measured using thermograph with various relative humidity of supply gases. It was found that the in-plane temperature distribution at the anode was more even than that at the cathode irrespective of the relative humidity of supply gas at the anode and the cathode. The temperature elevated along gas flow through the gas channel at the cathode irrespective of relative humidity of supply gas at the anode and the cathode. The in-plane temperature distribution at the cathode was narrower with the increase in Tini irrespective of relative humidity of supply gas at the cathode, while it was not observed when changing the relative humidity of supply gas at the anode. When the relative humidity of supply gas at cathode decreased, the in-plane temperature distribution at the anode was wider compared to decreasing the relative humidity of supply gas at the anode. The study concluded that the impact of relative humidity of supply gas at both anode and cathode had little impact on the in-plane temperature distribution at the cathode.
基金supported by the Fund of China Academy of Railway Sciences Corporation Limited(2022YJ230)the Scientific Research Projects of China Association of Metros(CAMET-KY-2022039).
文摘Purpose–This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor(BR)onboard the vehicle,which overcomes the vulnerability of having conventional temperature sensor.Design/methodology/approach–In this study,the energy model based sensorless estimation method is developed.By analyzing the structure and the convection dissipation process of the BR onboard the vehicle,the energy-based operational temperature model of the BR and its cooling domain is established.By adopting Newton’s law of cooling and the law of conservation of energy,the energy and temperature dynamic of the BR can be stated.To minimize the use of all kinds of sensors(including both thermal and electrical),a novel regenerative braking power calculation method is proposed,which involves only the voltage of DC traction network and the duty cycle of the chopping circuit;both of them are available for the traction control unit(TCU)of the vehicle.By utilizing a real-time iterative calculation and updating the parameter of the energy model,the operational temperature of the BR can be obtained and monitored in a sensorless manner.Findings–In this study,a sensorless estimation/monitoring method of the operational temperature of BR is proposed.The results show that it is possible to utilize the existing electrical sensors that is mandatory for the traction unit’s operation to estimate the operational temperature of BR,instead of adding dedicated thermal sensors.The results also validate the effectiveness of the proposal is acceptable for the engineering practical.Originality/value–The proposal of this study provides novel concepts for the sensorless operational temperature monitoring of BR onboard rolling stocks.The proposed method only involves quasi-global electrical variable and the internal control signal within the TCU.
基金the financial support from the National Natural Science Foundation of China(51972156,52072378,52102054 and 51927803)the National Key R&D Program of China(2022YFB3803400,2021YFB3800301)+2 种基金the Shenyang Science and Technology Program(22-322-3-19)the Youth Fund of the Education Department of Liaoning Province(LJKQZ20222324)the Outstanding Youth Fund of University of Science and Technology Liaoning(2023YQ11).
文摘Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.
文摘This work falls within the context of reducing energy consumption in Côte d’Ivoire. As the building sector is one of the energy consumers worldwide, it could be a major source of energy savings. A major source of energy savings. With this in mind thermal comfort in buildings in Côte d’Ivoire (Abidjan) in order to determine (Abidjan) to determine thermal comfort conditions. To carry out study, measurement campaigns were carried out in various buildings. These measured parameters were used to calculate comfort indices such as PMV, PDD, SET and operating temperature. A correlation was then made between the PMV index and the operating temperature, then between the SET and the operating temperature to determine the thermoneutrality temperature and the different thermal comfort thermal comfort ranges. The PMV gave a thermoneutrality temperature of 24.87˚C in the rainy season and a thermoneutrality temperature of 25.15˚C during the dry season. In addition, the SET gave comfort ranges, with values ranging from 23.23˚C to 25.70˚C in the rainy season and 23.35˚C to 26.08˚C in the dry season. In addition, the acceptability predicted by the PDD showed that in the rainy season, the premises were more acceptable than in the dry season.
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
文摘The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100~C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-HoUomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6. x 1015 (lnZ---35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.
基金supported by the Innovation Platform of Energy Storage Engineering and New Material in Zhejiang University(No.K19-534202-002)the National Natural Science Foundation of China(No.21978261)the Zhejiang Provincial Key Research and Development Program of China(No.2021C01030).
文摘Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu_(3)P)hybrids were rationally synthesized using a one-step carbonization method using pollen as the source material,acting as the sulfur host for LSBs.In the hybrid,polar Cu_(3)P can markedly inhibit the“shuttle effect”by regulating the adsorption ability toward polysulfides,as confirmed by theoretical calculations and experimental tests.As an example,the camellia pollen porous carbon(CPC)/Cu_(3)P/S electrode shows a high capacity of 1205.6 mAh g^(−1) at 0.1 C,an ultralow capacity decay rate of 0.038%per cycle after 1000 cycles at 1 C,and a rather high initial Coulombic efficiency of 98.5%.The CPC/Cu_(3)P LSBs can work well at high temperatures,having a high capacity of 545.9 mAh g^(−1) at 1 C even at 150℃.The strategy of the PC/Cu_(3)P hybrid proposed in this study is expected to be an ideal cathode for ultrastable high-temperature LSBs.We believe that this strategy is universal and worthy of in-depth development for the next generation energy storage devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574362)
文摘Here in this paper,we report a room-temperature operating infrared photodetector based on the interband transition of an In As Sb/Ga Sb quantum well.The interband transition energy of 5-nm thick In As(0.91)Sb(0.09) embedded in the Ga Sb barrier is calculated to be 0.53 e V(2.35μm),which makes the absorption range of In As Sb cover an entire range from short-wavelength infrared to long-wavelength infrared spectrum.The fabricated photodetector exhibits a narrow response range from 2.0μm to 2.3μm with a peak around 2.1μm at 300 K.The peak responsivity is 0.4 A/W under-500-m Vapplied bias voltage,corresponding to a peak quantum efficiency of 23.8%in the case without any anti-reflection coating.At 300 K,the photodetector exhibits a dark current density of 6.05×10^-3A/cm^2 under-400-m V applied bias voltage and 3.25×10^-5A/cm^2 under zero,separately.The peak detectivity is 6.91×10^10cm·Hz^1/2/W under zero bias voltage at 300 K.
基金This work is supported by Mie Prefecture IndustrialResearch Institute and the authors gratefullyacknowledge.
文摘According to the New Energy and Industry Technology Development Organization(NEDO)road map 2017 of Japan,polymer electrolyte fuel cell(PEFC)system is required to be operated at 90°C and 100°C for stationary and mobility applications,respectively.However,the general PEFC,which has Nafion membrane is operated within the temperature range between 60°C and 80°C.It is important to understand the temperature distribution in a PEFC cell for analyzing performance on working life span of PEFC.This study focuses on the combination of thin polymer electrolyte membrane(PEM)and thin gas diffusion layer(GDL)to improve power generation performance under relatively higher temperature operation conditions.In addition,this study also focuses on effect of micro porous layer(MPL),which can promote the mass transfer,over temperature distribution.The key aim of this study is to analyze impact of MPL of temperature distribution on the reaction surface(Treact)of a cell of PEFC using thin PEM and GDL with variations of H2 and O2 supply flow rates and their relative humidity(RH)with changing the initial operating temperature(Tini)from 80°C to 100°C.As a result,the distribution of Treact without MPL,for anode and cathode at 80%RH and Tini at 80°C and 90°C,is higher than normal conditions.There is a small difference in temperature distribution among different RH conditions with MPL.The distributions of Treact are relatively flat and almost the same among different RH conditions without MPL at Tini=100°C,while the distributions of Treact with MPL are almost the same among different RH conditions.This study is revealed that more even temperature distribution and higher power generation performance can be obtained in the case without MPL compared to the case with MPL.
基金Project(51402250)supported by the National Natural Science Foundation of ChinaProject(2015JJ4046)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(14B168)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘Bi3.15Nd0.85Ti3O12 (BNdT) films were deposited on Pt/Ti/SiO2/Si(100) substrates by a metal organic decomposition (MOD)method, and annealed by a rapid thermal annealing process in oxygen atmosphere and in air, respectively. The crystalline structuresand morphologies of BNdT films were characterized by X-ray diffraction and field-emission scanning electron microscopy, and thegas sensing properties were measured by monitoring its resistance at different gas concentrations. The results indicate that the BNdTfilms annealed in air are of porous microstructure and rough surface, and the annealing atmosphere has great influence on gas sensingproperties. At an operating temperature of 100 °C, the BNdT films annealed in air are of high response value to 1×10?6 gaseousethanol, and the detecting limit is as low as 0.1×10?6. The corresponding response and recovery time is about 10 and 6 s, respectively.The results can offer useful guidelines for fabricating high performance ethanol sensors.
文摘The operating temperature is a critical factor affecting the performances of photovoltaic(PV)modules.In this work,relevant models are proposed for the prediction of this operating temperature using data(ambient temperature and solar irradiance)based on real measurements conducted in the tropical region.For each weather condition(categorized according to irradiance and temperature levels),the temperatures of the PV modules obtained using the proposed approach is compared with the corresponding experimentally measured value.The results show that the proposed models have a smaller Root Mean Squared Error than other models developed in the literature for all weather conditions,which confirms the reliability of the proposed framework.
文摘Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.
基金China Ocean Mineral Resources Research and Development Association Project under contract No.DY125-12-R-03the National Natural Science Foundation of China under contract Nos 41476021 and 41321004the Scientific Research Fund of Second Institute of Oceanography,State Oceanic Administration China under contract No.JT1205
文摘A summer-time shipboard meteorological survey is described in the Northwest Indian Ocean. Shipboard observations are used to evaluate a satellite-based sea surface temperature(SST), and then find the main factors that are highly correlated with errors. Two satellite data, the first is remote sensing product of a microwave, which is a Tropical Rainfall Measuring Mission Microwave Imager(TMI), and the second is merged data from the microwave and infrared satellite as well as drifter observations, which is Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA). The results reveal that the daily mean SST of merged data has much lower bias and root mean square error as compared with that from microwave products. Therefore the results support the necessary of the merging infrared and drifter SST with a microwave satellite for improving the quality of the SST. Furthermore, the correlation coefficient between an SST error and meteorological parameters, which include a wind speed, an air temperature, a relative humidity, an air pressure, and a visibility. The results show that the wind speed has the largest correlation coefficient with the TMI SST error. However, the air temperature is the most important factor to the OSTIA SST error. Meanwhile,the relative humidity shows the high correlation with the SST error for the OSTIA product.
基金supported by the National Natural Science Foundation of China(No.51821005)。
文摘Solid/solid interface is the major challenge for high-performance solid-state batteries.Solid electrolytes(SEs)play a crucial role in the fabrication of effective interfaces in solid-state batteries.Herein,the electrolyte distribution with varied particle sizes is tuned to construct solid-state batteries with excellent performance at different operating temperatures.Solid-state batteries with the configuration S/L(small-sized SE in composite cathode and large-sized SE in electrolyte layer)show the best performance at room temperature(168 mA h g^(−1) at 0.2 C,retention of 99%,100 cycles)and−20°C(89 mA h g^(−1) at 0.05 C),while the configuration S/S displays better performance at elevated temperature.The superior performance of S/L battery is associated with faster lithium-ion dynamics due to the better solid/solid interface between active materials and electrolytes.Moreover,the inferior performance at 60℃is caused by the formation of voids and cracks in the electrolyte layer during cycling.In contrast,the S/S battery delivers superior performance at elevated operating temperature because of the integrated structure.This work confirms that tailoring electrolyte size has significant effect on fabricating all-climate solid-state batteries.
基金supported by the National Science and Technology Major Project(No.2018YFE0200900)。
文摘In this paper,we demonstrate nBn InAs/InAsSb type II superlattice(T2SL)photodetectors with AlAsSb as the barrier that targets mid-wavelength infrared(MWIR)detection.To improve operating temperature and suppress dark current,a specific Sb soaking technique was employed to improve the interface abruptness of the superlattice with device passivation using a SiO_(2) layer.These result in ultralow dark current density of 6.28×10^(-6)A/cm^(2)and 0.31 A/cm^(2)under-600 mV at 97 K and297 K,respectively,which is lower than most reported InAs/InAsSb-based MWIR photodetectors.Corresponding resistance area product values of 3.20×10^(4)Ω·cm^(2)and 1.32Ω·cm^(2)were obtained at 97 K and 297 K.A peak responsivity of 0.39 A/W with a cutoff wavelength around 5.5μm and a peak detectivity of 2.1×10^(9)cm·Hz^(1/2)/W were obtained at a high operating temperature up to 237 K.
基金supported by the National Key Research and Development Program(No.2021YFB2400300)the National Natural Science Foundation of China(No.52177214)supported by China Fujian Energy Devices Science and Technology Innovation Laboratory Open Fund(No.21C-OP202211)。
文摘FeS_(2) shows significant potential as cathode material for all-solid-state lithium batteries(ASSLBs)due to its high theoretical specific capacity,low cost,and environmental friendliness.However,the poor ion/electron conductivity and large volume variation effect of FeS_(2) inhibit its practical applications.Here,the influence of particle size of FeS_(2) on the corresponding sulfide-based solid-state batteries is carefully investigated by tuning FeS_(2) size.Moreover,low operating temperature is chosen to mitigate the large volume changes during cycling in the battery.S-FeS_(2) with smaller particle sizes delivers superior electrochemical performances than that of the larger L-FeS_(2) in Li_(5.5)PS_(4.5)Cl_(1.5)-based ASSLBs under different operating temperatures.S-FeS_(2) shows stable discharge capacities during 50 cycles with a current density of 0.1 m A/cm^(2)under -20℃.When the current density rises to 1.0 m A/cm^(2),it delivers an initial discharge capacity of 146.9 m Ah/g and maintains 63% of the capacity after 100 cycles.This work contributes to constructing ASSLBs enables excellent electrochemical performances under extreme operating temperatures.