An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluati...An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluation of learning state. This training method makes individual learning for different individual condition to give them ability to grasp learning points quickly, evaluate real-time learning effect, update learning style in time and summarize problems after one learning stage, so that learners can master professional knowledge in constant summaries and feedbacks. Obvious effects can be obtained on discontinuous learning time that trainees can master basic theories associated with their working and operations adapted to practical work quickly.展开更多
The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode...The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.展开更多
We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. Fo...We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.展开更多
Present-day small hydropower plants (SHPs) have a large development potential because of the increasing interest in renewable resources and distributed energy generation, therefore, there are many SHPs in places of Ch...Present-day small hydropower plants (SHPs) have a large development potential because of the increasing interest in renewable resources and distributed energy generation, therefore, there are many SHPs in places of China where are rich in water resources. However, it has caused overvoltages in the distribution network, and which is even worse for the switching overvoltage such as isolated network operation, changing power supply path. The simple network model is used to analyze the reasons of the switching overvoltage, and the simulation software DIgSILENT/PowerFactory is used to check out the results of the theoretical analysis.展开更多
Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina...Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability.展开更多
As the increasing number of wind energy is integrated into the national power grid,analyses of wind energy are becoming increasingly more crucial.The interaction between the topography and the northeast(NE)monsoon bri...As the increasing number of wind energy is integrated into the national power grid,analyses of wind energy are becoming increasingly more crucial.The interaction between the topography and the northeast(NE)monsoon brings abundant wind resources to the Taiwan Strait in autumn and winter.The offshore area has stronger and more stable wind resources,so deployment of offshore wind power is also actively being carried out.However,development of offshore wind power systems requires stricter evaluation and decision-making.Therefore,this study implements a multi-site measurement verification to establish the relationship between the wind resources of the nearshore wind turbine system and a potential offshore power site in Chanbin.In the absence of a wind turbine at a specific location,potential of offshore wind energy is analyzed through wind resources.The findings showed that although the distance between these two sites is substantial,the nearshore and offshore areas at Chanbin experience similar wind conditions,and nearshore wind turbine can respond well to changes in wind speed and generate power accordingly.Afterwards,on this basis,the offshore power potential was evaluated and compared with the nearshore wind turbine systems.The results suggested the advantages of offshore wind power.A further analysis of the differences between power generation on a monthly basis was carried out to determine the distribution of wind turbine operation modes and illustrate the influence of the NE monsoon.展开更多
The mode-area scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can opera...The mode-area scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300μm in core diameter with numerical aperture 0.1.展开更多
文摘An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluation of learning state. This training method makes individual learning for different individual condition to give them ability to grasp learning points quickly, evaluate real-time learning effect, update learning style in time and summarize problems after one learning stage, so that learners can master professional knowledge in constant summaries and feedbacks. Obvious effects can be obtained on discontinuous learning time that trainees can master basic theories associated with their working and operations adapted to practical work quickly.
基金funded by the Project “Resource Characteristics of Main Watersheds and Key Issues in Development and Utilization of Hydroelectricity in South America and Africa”the National Science Foundation of China (U1766201)
文摘The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632801the National Key Research and Development Program under Grant No 2016YFB0402303+2 种基金the National Natural Science Foundation of China under Grant Nos61435014,61627822,61574136 and 61306058the Key Projects of Chinese Academy of Sciences under Grant No ZDRW-XH-2016-4the Beijing Natural Science Foundation under Grant No 4162060
文摘We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.
文摘Present-day small hydropower plants (SHPs) have a large development potential because of the increasing interest in renewable resources and distributed energy generation, therefore, there are many SHPs in places of China where are rich in water resources. However, it has caused overvoltages in the distribution network, and which is even worse for the switching overvoltage such as isolated network operation, changing power supply path. The simple network model is used to analyze the reasons of the switching overvoltage, and the simulation software DIgSILENT/PowerFactory is used to check out the results of the theoretical analysis.
基金supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(52488201)the National Natural Science Foundation of China(52376209)+1 种基金the China Postdoctoral Science Foundation(2020T130503 and 2020M673386)the China Fundamental Research Funds for the Central Universities.
文摘Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability.
基金financially supported in part by the National Science Council,Republic of China,under contract MOST 110-2221-E-006-183-supported by Taipower and RCETS offshore wind power team.
文摘As the increasing number of wind energy is integrated into the national power grid,analyses of wind energy are becoming increasingly more crucial.The interaction between the topography and the northeast(NE)monsoon brings abundant wind resources to the Taiwan Strait in autumn and winter.The offshore area has stronger and more stable wind resources,so deployment of offshore wind power is also actively being carried out.However,development of offshore wind power systems requires stricter evaluation and decision-making.Therefore,this study implements a multi-site measurement verification to establish the relationship between the wind resources of the nearshore wind turbine system and a potential offshore power site in Chanbin.In the absence of a wind turbine at a specific location,potential of offshore wind energy is analyzed through wind resources.The findings showed that although the distance between these two sites is substantial,the nearshore and offshore areas at Chanbin experience similar wind conditions,and nearshore wind turbine can respond well to changes in wind speed and generate power accordingly.Afterwards,on this basis,the offshore power potential was evaluated and compared with the nearshore wind turbine systems.The results suggested the advantages of offshore wind power.A further analysis of the differences between power generation on a monthly basis was carried out to determine the distribution of wind turbine operation modes and illustrate the influence of the NE monsoon.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10576012 and 60538010.
文摘The mode-area scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300μm in core diameter with numerical aperture 0.1.