Using the improved prospect theory with the linear transformations of rewarding good and punishing bad(RGPBIT),a new investment ranking model for power grid construction projects(PGCPs)is proposed.Given the uncertaint...Using the improved prospect theory with the linear transformations of rewarding good and punishing bad(RGPBIT),a new investment ranking model for power grid construction projects(PGCPs)is proposed.Given the uncertainty of each index value under the market environment,fuzzy numbers are used to describe qualitative indicators and interval numbers are used to describe quantitative ones.Taking into account decision-maker’s subjective risk attitudes,a multi-criteria decision-making(MCDM)method based on improved prospect theory is proposed.First,the[−1,1]RGPBIT operator is proposed to normalize the original data,to obtain the best andworst schemes of PGCPs.Furthermore,the correlation coefficients between interval/fuzzy numbers and the best/worst schemes are defined and introduced to the prospect theory to improve its value function and loss function,and the positive and negative prospect value matrices of the project are obtained.Then,the optimization model with the maximum comprehensive prospect value is constructed,the optimal attribute weight is determined,and the PGCPs are ranked accordingly.Taking four PGCPs of the IEEERTS-79 node system as examples,an illustration of the feasibility and effectiveness of the proposed method is provided.展开更多
In the present contribution, operational modal analysis in conjunction with bees optimization algorithm are utilized to update the finite element model of a solar power plant structure. The physical parameters which r...In the present contribution, operational modal analysis in conjunction with bees optimization algorithm are utilized to update the finite element model of a solar power plant structure. The physical parameters which required to be updated are uncertain parameters including geometry, material properties and boundary conditions of the aforementioned structure. To determine these uncertain parameters, local and global sensitivity analyses are performed to increase the solution accuracy. An objective function is determined using the sum of the squared errors between the natural frequencies calculated by finite element method and operational modal analysis, which is optimized using bees optimization algorithm. The natural frequencies of the solar power plant structure are estimated by multi-setup stochastic subspace identification method which is considered as a strong and efficient method in operational modal analysis. The proposed algorithm is efficiently implemented on the solar power plant structure located in Shahid Chamran university of Ahvaz, Iran, to update parameters of its finite element model. Moreover, computed natural frequencies by numerical method are compared with those of the operational modal analysis. The results indicate that, bees optimization algorithm leads accurate results with fast convergence.展开更多
文摘Using the improved prospect theory with the linear transformations of rewarding good and punishing bad(RGPBIT),a new investment ranking model for power grid construction projects(PGCPs)is proposed.Given the uncertainty of each index value under the market environment,fuzzy numbers are used to describe qualitative indicators and interval numbers are used to describe quantitative ones.Taking into account decision-maker’s subjective risk attitudes,a multi-criteria decision-making(MCDM)method based on improved prospect theory is proposed.First,the[−1,1]RGPBIT operator is proposed to normalize the original data,to obtain the best andworst schemes of PGCPs.Furthermore,the correlation coefficients between interval/fuzzy numbers and the best/worst schemes are defined and introduced to the prospect theory to improve its value function and loss function,and the positive and negative prospect value matrices of the project are obtained.Then,the optimization model with the maximum comprehensive prospect value is constructed,the optimal attribute weight is determined,and the PGCPs are ranked accordingly.Taking four PGCPs of the IEEERTS-79 node system as examples,an illustration of the feasibility and effectiveness of the proposed method is provided.
文摘In the present contribution, operational modal analysis in conjunction with bees optimization algorithm are utilized to update the finite element model of a solar power plant structure. The physical parameters which required to be updated are uncertain parameters including geometry, material properties and boundary conditions of the aforementioned structure. To determine these uncertain parameters, local and global sensitivity analyses are performed to increase the solution accuracy. An objective function is determined using the sum of the squared errors between the natural frequencies calculated by finite element method and operational modal analysis, which is optimized using bees optimization algorithm. The natural frequencies of the solar power plant structure are estimated by multi-setup stochastic subspace identification method which is considered as a strong and efficient method in operational modal analysis. The proposed algorithm is efficiently implemented on the solar power plant structure located in Shahid Chamran university of Ahvaz, Iran, to update parameters of its finite element model. Moreover, computed natural frequencies by numerical method are compared with those of the operational modal analysis. The results indicate that, bees optimization algorithm leads accurate results with fast convergence.