A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
An optimization design technique to obtain global solution for a two-stage operational amplifier(op-amp) with frequency compensation is presented.This frequency compensation technique can adjust the equivalent resista...An optimization design technique to obtain global solution for a two-stage operational amplifier(op-amp) with frequency compensation is presented.This frequency compensation technique can adjust the equivalent resistance to guarantee that the phase margin is stable even though circumstance temperature varies.Geometric programming is used to optimize the component values and transistor dimensions.It is used in this analog integrated circuit design to calculate these parameters automatically.This globally optimal amplifier obtains minimum power while other specifications are fulfilled.展开更多
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
基金the Shanghai Application Material(AM) Research Foundation (No.08700740700)
文摘An optimization design technique to obtain global solution for a two-stage operational amplifier(op-amp) with frequency compensation is presented.This frequency compensation technique can adjust the equivalent resistance to guarantee that the phase margin is stable even though circumstance temperature varies.Geometric programming is used to optimize the component values and transistor dimensions.It is used in this analog integrated circuit design to calculate these parameters automatically.This globally optimal amplifier obtains minimum power while other specifications are fulfilled.