In view of the environment competencies,selecting the optimal green supplier is one of the crucial issues for enterprises,and multi-criteria decision-making(MCDM)methodologies can more easily solve this green supplier...In view of the environment competencies,selecting the optimal green supplier is one of the crucial issues for enterprises,and multi-criteria decision-making(MCDM)methodologies can more easily solve this green supplier selection(GSS)problem.In addition,prioritized aggregation(PA)operator can focus on the prioritization relationship over the criteria,Choquet integral(CI)operator can fully take account of the importance of criteria and the interactions among them,and Bonferroni mean(BM)operator can capture the interrelationships of criteria.However,most existing researches cannot simultaneously consider the interactions,interrelationships and prioritizations over the criteria,which are involved in the GSS process.Moreover,the interval type-2 fuzzy set(IT2FS)is a more effective tool to represent the fuzziness.Therefore,based on the advantages of PA,CI,BM and IT2FS,in this paper,the interval type-2 fuzzy prioritized Choquet normalized weighted BM operators with fuzzy measure and generalized prioritized measure are proposed,and some properties are discussed.Then,a novel MCDM approach for GSS based upon the presented operators is developed,and detailed decision steps are given.Finally,the applicability and practicability of the proposed methodology are demonstrated by its application in the shared-bike GSS and by comparisons with other methods.The advantages of the proposed method are that it can consider interactions,interrelationships and prioritizations over the criteria simultaneously.展开更多
The intention of this paper is to give direct and converse results on weighted simultaneous approximation by means of Sz(?)sz-Kantorovich operators and Baskakov-Kantorovich operators in L_p-norms using the weighted Di...The intention of this paper is to give direct and converse results on weighted simultaneous approximation by means of Sz(?)sz-Kantorovich operators and Baskakov-Kantorovich operators in L_p-norms using the weighted Ditzian-Totik modulus of smoothness.展开更多
In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle...In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.展开更多
With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matchi...With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.展开更多
The existence of infinitely many solutions of the following Dirichlet problem for p-mean curvature operator:-div((1+|u| 2) p-22u)=f(x,u),\ x∈Ω, u∈W 1,p 0(Ω),is considered, where Ω is a bounded domain in ...The existence of infinitely many solutions of the following Dirichlet problem for p-mean curvature operator:-div((1+|u| 2) p-22u)=f(x,u),\ x∈Ω, u∈W 1,p 0(Ω),is considered, where Ω is a bounded domain in R n(n>p>1) with smooth boundary Ω.Under some natural conditions together with some conditions weaker than (AR) condition,we prove that the above problem has infinitely many solutions by a symmetric version of the Mountain Pass Theorem if f(x,u)|u| p-2u→+∞ as u→∞.展开更多
Using reproducing kernels for Hilbert spaces, we give best approximation for Weierstrass transform associated with spherical mean operator. Also, estimates of extremal functions are checked.
Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neith...Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neither true nor false is useful in the resolution of real-life problems.However,simultaneous variations render neutrosophic sets unsuitable in specific circumstances.To enable the management of these sorts of issues,we combine the principle of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multivalued complex neutrosophic uncertain linguistic sets.Multi-valued complex neutrosophic uncertain linguistic sets can contain grades of truth,abstinence,and falsity,and uncertain linguistic terms,which are expressed as complex numbers whose real and imaginary parts are limited to the unit interval.Some important Dombi laws are elaborated along with Bonferroni mean operators,which offer a flexible general structure with modifiable factors.Bonferroni means aggregation operators perform a significant role in conveying the magnitude level of options and characteristics.To determine relationships among any number of attributes,we develop multi-valued complex neutrosophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operators and discuss their important properties with some special cases.By using these laws,we can deploy themulti-attribute decisionmaking(MADM)technique using the novel principle of multi-valued complex neutrosophic uncertain linguistic sets.To determine the power and flexibility of the elaborated approach,we resolve some numerical examples based on the proposed operator.Finally,the work is validated with the help of comparative analysis,a discussion of its advantages,and geometric expressions of the elaborated theories.展开更多
The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q...The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q-rung orthopair fuzzy set,where membership degrees and nonmembership degrees are represented in terms of linguistic variables.The basic notions of Cq-ROFLS have been introduced and study their basic operations and properties.Furthermore,to aggregate the different pairs of preferences,we introduce the Cq-ROFL Muirhead mean-(MM),weighted MM-,dual MM-based operators.The major advantage of considering the MM is that it considers the interrelationship between more than two arguments at a time.On the other hand,the Cq-ROFLS has the ability to describe the qualitative information in terms of linguistic variables.Several properties and relation of the derived operators are argued.In addition,we also investigate multiattribute decision-making problems under the Cq-ROFLS environment and illustrate with a numerical example.Finally,the effectiveness and advantages of the work are established by comparing with other methods.展开更多
In this manuscript,the theory of complex T-spherical dual hesitant uncertain linguistic set is discovered,which is the mixture of three different ideas like the complex T-spherical fuzzy set,dual hesitant fuzzy set,an...In this manuscript,the theory of complex T-spherical dual hesitant uncertain linguistic set is discovered,which is the mixture of three different ideas like the complex T-spherical fuzzy set,dual hesitant fuzzy set,and uncertain linguistic set.The complex T-spherical dual hesitant uncertain linguistic set composes the uncertain linguistic set,truth grade,abstinence grade,and falsity grade.Whose real and imaginary parts are the subset of a unit interval,and some of their operational laws are also presented.The theory of complex T-spherical dual hesitant uncertain linguistic Muirhead mean operator,complex T-spherical dual hesitant uncertain linguistic weighted Muirhead mean operator,complex T-spherical dual hesitant uncertain linguistic dual Muirhead mean operator and complex T-spherical dual hesitant uncertain linguistic weighted dual Muirhead mean operator are discovered.Some exceptional cases of the proposed operators are also examined.A multi-attribute decision making technique is further utilized based on explored operators.Moreover,an enterprise informatization level evaluation issue is resolved by using the presented operators to verify the proficiency and capability of the discovered approaches.Finally,some comparative analysis and advantages of the explored works are further developed to express that it is more flexible and effective than the existing methods.展开更多
By bifurcation and topological methods,we study the global structure of a radial nodal solutions set of the mean curvature equation in a standard static spacetime div {a∇u√1−a^(2)|∇u|^(2)+g(∇u,∇a)/√1−a^(2)|∇u|^(2)=...By bifurcation and topological methods,we study the global structure of a radial nodal solutions set of the mean curvature equation in a standard static spacetime div {a∇u√1−a^(2)|∇u|^(2)+g(∇u,∇a)/√1−a^(2)|∇u|^(2)=λNH,with a 0-Dirichlet boundary condition on the unit ball.According to the behavior of H near 0,we obtain the global structure of sign-changing radial spacelike graphs for this problem.展开更多
In this paper,we establish a unilateral global bifurcation result from interval for a class problem with mean curvature operator in Minkowski space with non-differentiable nonlinearity.As applications of the above res...In this paper,we establish a unilateral global bifurcation result from interval for a class problem with mean curvature operator in Minkowski space with non-differentiable nonlinearity.As applications of the above result,we shall prove the existence of one-sign solutions to the following problem{−div(√∇v 1−|∇v|^(2))=α(x)v^(+)+β(x)v^(−)+λa(x)f(v),in B_(R)(0),v(x)=0,on∂B_(R)(0),whereλ≠=0 is a parameter,R is a positive constant and BR(0)={x∈RN:|x|<R}is the standard open ball in the Euclidean space RN(N≥1)which is centered at the origin and has radius R.v^(+)=max{v,0},v−=−min{v,0},a(x)∈C(BR(0),(0,+∞)),α(x),β(x)∈C(BR(0)),a(x),α(x)andβ(x)are radially symmetric with respect to x;f∈C(R,R),sf(s)>0 for s≠=0,and f_(0)∈[0,∞],where f0=lim_(|s|)→0 f(s)/s.We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results.We also study the asymptotic behaviors of positive radial solutions asλ→+∞.展开更多
The accurate theoretical expressions of the mean field operator associated with the multi-configuration time-dependent Hartree-Fock (MCTDHF) method are presented in this paper. By using a theoretical formula, derive...The accurate theoretical expressions of the mean field operator associated with the multi-configuration time-dependent Hartree-Fock (MCTDHF) method are presented in this paper. By using a theoretical formula, derived without approxima- tion, we can study the multi-electron correlation dynamics accurately. Some illustrative calculations are carried out to check the accuracy of the expression of the mean field operator. The results of illustrative calculations indicate the reliability of the accurate expression of the mean field operator. This theoretical calculation method for the mean field operator may be of considerable help in future studies of the correlated dynamics of many-electron systems in strong laser fields.展开更多
During the COVID-19 outbreak,the use of single-use medical supplies increased significantly.It is essential to select suitable sites for establishing medical waste treatment stations.It is a big challenge to solve the...During the COVID-19 outbreak,the use of single-use medical supplies increased significantly.It is essential to select suitable sites for establishing medical waste treatment stations.It is a big challenge to solve the medical waste treatment station selection problem due to some conflicting factors.This paper proposes a multi-attribute decision-making(MADM)method based on the partitioned Maclaurin symmetric mean(PMSM)operator.For the medical waste treatment station selection problem,the factors or attributes(these two terms can be interchanged.)in the same clusters are closely related,and the attributes in different clusters have no relationships.The partitioned Maclaurin symmetric mean function(PMSMF)can handle these complex attribute relationships.Hence,we extend the PMSM operator to process the linguistic q-rung orthopair fuzzy numbers(Lq-ROFNs)and propose the linguistic q-rung orthopair fuzzy partitioned Maclaurin symmetric mean(Lq-ROFPMSM)operator and its weighted form(Lq-ROFWPMSM).To reduce the negative impact of unreasonable data on the final output results,we propose the linguistic q-rung orthopair fuzzy partitioned dual Maclaurin symmetric mean(Lq-ROFPDMSM)operator and its weighted form(Lq-ROFWPDMSM).We also discuss the characteristics and typical examples of the above operators.A novel MADM method uses the Lq-ROFWPMSM operator and the Lq-ROFWPDMSM operator to solve the medical waste treatment station selection problem.Finally,the usability and superiority of the proposed method are verified by comparing it with previous methods.展开更多
In the study by Baliarsingh and Dutta [Internat. J.Anal., Vol.2014(2014), Article ID 786437], the authors computed the spectrum and the fine spectrum of the product operator G (u, v; A) over the sequence space e1....In the study by Baliarsingh and Dutta [Internat. J.Anal., Vol.2014(2014), Article ID 786437], the authors computed the spectrum and the fine spectrum of the product operator G (u, v; A) over the sequence space e1. The product operator G (u, v; △) over l1 is defined by (G(u,v;△)x)k=^k∑i=0ukvi(xi- xi-1) with xk = 0 for all k 〈 0, where x = (xk)∈e1,and u and v axe either constant or strictly decreasing sequences of positive real numbers satisfying certain conditions. In this article we give some improvements of the computation of the spectrum of the operator G (u, v; △) on the sequence space gl.展开更多
This paper is concerned with the existence of positive solutions of the followingDirichlet problem for p-mean curvature operator with critical exponent: -div((1 +|↓△u|^2 )p-2/2 ↓△u) = λup-1+μ u=q-1,u 〉...This paper is concerned with the existence of positive solutions of the followingDirichlet problem for p-mean curvature operator with critical exponent: -div((1 +|↓△u|^2 )p-2/2 ↓△u) = λup-1+μ u=q-1,u 〉 0,x x∈Ω,u=0,x∈ δΩ,where u ∈ W01,P is a bounded domain in R^N(N 〉 p 〉 1) with smooth boundary δΩ, 2≤p ≤q〈p,p=Np/N-p,λ,μ〉0. It reaches the conclusions that this problem has at least one positive solution in the different cases. It is discussed the existences of positivesolutions of the Dirichlet problem for the p-mean curvature operator with critical exponentby using Nehari-type duality property firstly. As p = 2, q = p, the result is correspond tothat of Laplace operator.展开更多
This paper presents the result of research of deep structure of natural language. The main result attained is the existence of a deterministic mathematical model that relates phonetics to associated mental images star...This paper presents the result of research of deep structure of natural language. The main result attained is the existence of a deterministic mathematical model that relates phonetics to associated mental images starting from the simplest linguistic units in agreement with the human response to different acoustic stimuli. Moreover, there exists two level hierarchy for natural language understanding. The first level uncovers the conceptual meaning of linguistic units, and hence forming a corresponding mental image. At the second level the operational meaning is found to suit, context, pragmatics, and world knowledge. This agrees with our knowledge about human cognition. The resulting model is parallel, hierarchical but still concise to explain the speed of natural language understanding.展开更多
For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator m...For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 Since A #0,r B = A and A #l,r B = B, weregard A#t,rB as apath combining A and B.Our aim is to show the essential properties of St,r (AIB). The Tsallis relative operator entropy by Yanagi, Kuriyama and Furuichi can also be expanded, and by using this, we can give an expanded operator valued a-divergence and obtain its properties.展开更多
The purpose of this paper is to study mean ergodic theorems concerning continuous or positive operators taking values in Jordan-Banach weak algebras and Jordan C*-algebras, making use the topological and order struct...The purpose of this paper is to study mean ergodic theorems concerning continuous or positive operators taking values in Jordan-Banach weak algebras and Jordan C*-algebras, making use the topological and order structures of the corresponding spaces. The results are obtained applying or extending previous classical results and methods of Ayupov, Carath6odory, Cohen, Eberlein, Kakutani and Yosida. Moreover, this results can be applied to continious or positive operators appearing in diffusion theory, quantum mechanics and quantum 13robabilitv theory.展开更多
The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation ope...The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation operators through adjustments to the parameter k.The hesitant q-rung orthopair set(Hq-ROFSs)can serve as an extension of the existing orthopair fuzzy sets,which provides decision makers more freedom in describing their true opinions.The objective of this paper is to present an MSM operator to aggregate hesitant q-rung orthopair numbers and solve the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant q-rung orthopair fuzzy sets(H-qROFSs).Firstly,the definition of H-qROFSs and some operational laws of H-qROFSs are proposed.Then we develop a family of hesitant q-rung orthopair fuzzy maclaurin symmetric mean aggregation operators,such as the hesitant q-rung orthopair fuzzy maclaurin symmetric mean(Hq-ROFMSM)operator,the hesitant q-rung orthopair fuzzy weighted maclaurin symmetric mean(Hq-ROFWMSM)operator,the hesitant q-rung orthopair fuzzy dual maclaurin symmetric mean(Hq-ROFDMSM)operator,the hesitant q-rung orthopair fuzzy weighted dual maclaurin symmetric mean(Hq-ROFWDMSM)operator.And the properties and special cases of these proposed operators are studied.Furthermore,an approach based on the Hq-ROFWMSM operator is proposed for multiple attribute decision making problems under hesitant q-rung orthopair fuzzy environment.Finally,a numerical example and comparative analysis is given to illustrate the application of the proposed approach.展开更多
基金supported by the National Natural Science Foundation of China(71771140)Project of Cultural Masters and“the Four Kinds of a Batch”Talents,the Special Funds of Taishan Scholars Project of Shandong Province(ts201511045)the Major Bidding Projects of National Social Science Fund of China(19ZDA080)。
文摘In view of the environment competencies,selecting the optimal green supplier is one of the crucial issues for enterprises,and multi-criteria decision-making(MCDM)methodologies can more easily solve this green supplier selection(GSS)problem.In addition,prioritized aggregation(PA)operator can focus on the prioritization relationship over the criteria,Choquet integral(CI)operator can fully take account of the importance of criteria and the interactions among them,and Bonferroni mean(BM)operator can capture the interrelationships of criteria.However,most existing researches cannot simultaneously consider the interactions,interrelationships and prioritizations over the criteria,which are involved in the GSS process.Moreover,the interval type-2 fuzzy set(IT2FS)is a more effective tool to represent the fuzziness.Therefore,based on the advantages of PA,CI,BM and IT2FS,in this paper,the interval type-2 fuzzy prioritized Choquet normalized weighted BM operators with fuzzy measure and generalized prioritized measure are proposed,and some properties are discussed.Then,a novel MCDM approach for GSS based upon the presented operators is developed,and detailed decision steps are given.Finally,the applicability and practicability of the proposed methodology are demonstrated by its application in the shared-bike GSS and by comparisons with other methods.The advantages of the proposed method are that it can consider interactions,interrelationships and prioritizations over the criteria simultaneously.
基金Supported by the foundation of Zhejiang province
文摘The intention of this paper is to give direct and converse results on weighted simultaneous approximation by means of Sz(?)sz-Kantorovich operators and Baskakov-Kantorovich operators in L_p-norms using the weighted Ditzian-Totik modulus of smoothness.
文摘In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.
文摘With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.
基金Supported by the National Natural Science Foundation of China(1 0 1 71 0 3 2 ) and the GuangdongProvincial Natural Science Foundation(0 1 1 6 0 6 )
文摘The existence of infinitely many solutions of the following Dirichlet problem for p-mean curvature operator:-div((1+|u| 2) p-22u)=f(x,u),\ x∈Ω, u∈W 1,p 0(Ω),is considered, where Ω is a bounded domain in R n(n>p>1) with smooth boundary Ω.Under some natural conditions together with some conditions weaker than (AR) condition,we prove that the above problem has infinitely many solutions by a symmetric version of the Mountain Pass Theorem if f(x,u)|u| p-2u→+∞ as u→∞.
文摘Using reproducing kernels for Hilbert spaces, we give best approximation for Weierstrass transform associated with spherical mean operator. Also, estimates of extremal functions are checked.
文摘Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neither true nor false is useful in the resolution of real-life problems.However,simultaneous variations render neutrosophic sets unsuitable in specific circumstances.To enable the management of these sorts of issues,we combine the principle of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multivalued complex neutrosophic uncertain linguistic sets.Multi-valued complex neutrosophic uncertain linguistic sets can contain grades of truth,abstinence,and falsity,and uncertain linguistic terms,which are expressed as complex numbers whose real and imaginary parts are limited to the unit interval.Some important Dombi laws are elaborated along with Bonferroni mean operators,which offer a flexible general structure with modifiable factors.Bonferroni means aggregation operators perform a significant role in conveying the magnitude level of options and characteristics.To determine relationships among any number of attributes,we develop multi-valued complex neutrosophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operators and discuss their important properties with some special cases.By using these laws,we can deploy themulti-attribute decisionmaking(MADM)technique using the novel principle of multi-valued complex neutrosophic uncertain linguistic sets.To determine the power and flexibility of the elaborated approach,we resolve some numerical examples based on the proposed operator.Finally,the work is validated with the help of comparative analysis,a discussion of its advantages,and geometric expressions of the elaborated theories.
文摘The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q-rung orthopair fuzzy set,where membership degrees and nonmembership degrees are represented in terms of linguistic variables.The basic notions of Cq-ROFLS have been introduced and study their basic operations and properties.Furthermore,to aggregate the different pairs of preferences,we introduce the Cq-ROFL Muirhead mean-(MM),weighted MM-,dual MM-based operators.The major advantage of considering the MM is that it considers the interrelationship between more than two arguments at a time.On the other hand,the Cq-ROFLS has the ability to describe the qualitative information in terms of linguistic variables.Several properties and relation of the derived operators are argued.In addition,we also investigate multiattribute decision-making problems under the Cq-ROFLS environment and illustrate with a numerical example.Finally,the effectiveness and advantages of the work are established by comparing with other methods.
基金This work is supported by the the Social Sciences Planning Projects of Zhejiang(21QNYC11ZD)Major Humanities and Social Sciences Research Projects in Zhejiang Universities(2018QN058)+2 种基金Statistical Scientific Key Research Project of China(2021LZ33)Fun-damental Research Funds for the Provincial Universities of Zhejiang(SJWZ2020002),Longyuan Construction Financial Research Project of Ningbo University(LYYB2002)the First Class Discipline of Zhejiang-A(Zhejiang Gongshang University Statistics).
文摘In this manuscript,the theory of complex T-spherical dual hesitant uncertain linguistic set is discovered,which is the mixture of three different ideas like the complex T-spherical fuzzy set,dual hesitant fuzzy set,and uncertain linguistic set.The complex T-spherical dual hesitant uncertain linguistic set composes the uncertain linguistic set,truth grade,abstinence grade,and falsity grade.Whose real and imaginary parts are the subset of a unit interval,and some of their operational laws are also presented.The theory of complex T-spherical dual hesitant uncertain linguistic Muirhead mean operator,complex T-spherical dual hesitant uncertain linguistic weighted Muirhead mean operator,complex T-spherical dual hesitant uncertain linguistic dual Muirhead mean operator and complex T-spherical dual hesitant uncertain linguistic weighted dual Muirhead mean operator are discovered.Some exceptional cases of the proposed operators are also examined.A multi-attribute decision making technique is further utilized based on explored operators.Moreover,an enterprise informatization level evaluation issue is resolved by using the presented operators to verify the proficiency and capability of the discovered approaches.Finally,some comparative analysis and advantages of the explored works are further developed to express that it is more flexible and effective than the existing methods.
基金Research supported by NNSF of China(11871129)Xinghai Youqing funds from Dalian University of Technology+1 种基金NSF of Liaoning Province(2019-MS-109)HSSF of Chinese Ministry of Education(20YJA790049).
文摘By bifurcation and topological methods,we study the global structure of a radial nodal solutions set of the mean curvature equation in a standard static spacetime div {a∇u√1−a^(2)|∇u|^(2)+g(∇u,∇a)/√1−a^(2)|∇u|^(2)=λNH,with a 0-Dirichlet boundary condition on the unit ball.According to the behavior of H near 0,we obtain the global structure of sign-changing radial spacelike graphs for this problem.
基金Supported by the`Kaiwu'Innovation Team Support Project of Lanzhou Institute of Technology(2018KW-03),the NSFC(11561038).
文摘In this paper,we establish a unilateral global bifurcation result from interval for a class problem with mean curvature operator in Minkowski space with non-differentiable nonlinearity.As applications of the above result,we shall prove the existence of one-sign solutions to the following problem{−div(√∇v 1−|∇v|^(2))=α(x)v^(+)+β(x)v^(−)+λa(x)f(v),in B_(R)(0),v(x)=0,on∂B_(R)(0),whereλ≠=0 is a parameter,R is a positive constant and BR(0)={x∈RN:|x|<R}is the standard open ball in the Euclidean space RN(N≥1)which is centered at the origin and has radius R.v^(+)=max{v,0},v−=−min{v,0},a(x)∈C(BR(0),(0,+∞)),α(x),β(x)∈C(BR(0)),a(x),α(x)andβ(x)are radially symmetric with respect to x;f∈C(R,R),sf(s)>0 for s≠=0,and f_(0)∈[0,∞],where f0=lim_(|s|)→0 f(s)/s.We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results.We also study the asymptotic behaviors of positive radial solutions asλ→+∞.
基金supported by the Scientific Research Program of the Higher Education Institution of Xinjiang, China (Grant No. XJEDU2012S41)the National Natural Science Foundation of China (Grant No. 10974198)
文摘The accurate theoretical expressions of the mean field operator associated with the multi-configuration time-dependent Hartree-Fock (MCTDHF) method are presented in this paper. By using a theoretical formula, derived without approxima- tion, we can study the multi-electron correlation dynamics accurately. Some illustrative calculations are carried out to check the accuracy of the expression of the mean field operator. The results of illustrative calculations indicate the reliability of the accurate expression of the mean field operator. This theoretical calculation method for the mean field operator may be of considerable help in future studies of the correlated dynamics of many-electron systems in strong laser fields.
基金This research work was supported by the National Natural Science Foundation of China under Grant No.U1805263.
文摘During the COVID-19 outbreak,the use of single-use medical supplies increased significantly.It is essential to select suitable sites for establishing medical waste treatment stations.It is a big challenge to solve the medical waste treatment station selection problem due to some conflicting factors.This paper proposes a multi-attribute decision-making(MADM)method based on the partitioned Maclaurin symmetric mean(PMSM)operator.For the medical waste treatment station selection problem,the factors or attributes(these two terms can be interchanged.)in the same clusters are closely related,and the attributes in different clusters have no relationships.The partitioned Maclaurin symmetric mean function(PMSMF)can handle these complex attribute relationships.Hence,we extend the PMSM operator to process the linguistic q-rung orthopair fuzzy numbers(Lq-ROFNs)and propose the linguistic q-rung orthopair fuzzy partitioned Maclaurin symmetric mean(Lq-ROFPMSM)operator and its weighted form(Lq-ROFWPMSM).To reduce the negative impact of unreasonable data on the final output results,we propose the linguistic q-rung orthopair fuzzy partitioned dual Maclaurin symmetric mean(Lq-ROFPDMSM)operator and its weighted form(Lq-ROFWPDMSM).We also discuss the characteristics and typical examples of the above operators.A novel MADM method uses the Lq-ROFWPMSM operator and the Lq-ROFWPDMSM operator to solve the medical waste treatment station selection problem.Finally,the usability and superiority of the proposed method are verified by comparing it with previous methods.
文摘In the study by Baliarsingh and Dutta [Internat. J.Anal., Vol.2014(2014), Article ID 786437], the authors computed the spectrum and the fine spectrum of the product operator G (u, v; A) over the sequence space e1. The product operator G (u, v; △) over l1 is defined by (G(u,v;△)x)k=^k∑i=0ukvi(xi- xi-1) with xk = 0 for all k 〈 0, where x = (xk)∈e1,and u and v axe either constant or strictly decreasing sequences of positive real numbers satisfying certain conditions. In this article we give some improvements of the computation of the spectrum of the operator G (u, v; △) on the sequence space gl.
基金Supported by the National Natural Science Foundation of China(10171032) Supported by the Guangdong Provincial Natural Science Foundation of China(011606)
文摘This paper is concerned with the existence of positive solutions of the followingDirichlet problem for p-mean curvature operator with critical exponent: -div((1 +|↓△u|^2 )p-2/2 ↓△u) = λup-1+μ u=q-1,u 〉 0,x x∈Ω,u=0,x∈ δΩ,where u ∈ W01,P is a bounded domain in R^N(N 〉 p 〉 1) with smooth boundary δΩ, 2≤p ≤q〈p,p=Np/N-p,λ,μ〉0. It reaches the conclusions that this problem has at least one positive solution in the different cases. It is discussed the existences of positivesolutions of the Dirichlet problem for the p-mean curvature operator with critical exponentby using Nehari-type duality property firstly. As p = 2, q = p, the result is correspond tothat of Laplace operator.
文摘This paper presents the result of research of deep structure of natural language. The main result attained is the existence of a deterministic mathematical model that relates phonetics to associated mental images starting from the simplest linguistic units in agreement with the human response to different acoustic stimuli. Moreover, there exists two level hierarchy for natural language understanding. The first level uncovers the conceptual meaning of linguistic units, and hence forming a corresponding mental image. At the second level the operational meaning is found to suit, context, pragmatics, and world knowledge. This agrees with our knowledge about human cognition. The resulting model is parallel, hierarchical but still concise to explain the speed of natural language understanding.
文摘For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 Since A #0,r B = A and A #l,r B = B, weregard A#t,rB as apath combining A and B.Our aim is to show the essential properties of St,r (AIB). The Tsallis relative operator entropy by Yanagi, Kuriyama and Furuichi can also be expanded, and by using this, we can give an expanded operator valued a-divergence and obtain its properties.
文摘The purpose of this paper is to study mean ergodic theorems concerning continuous or positive operators taking values in Jordan-Banach weak algebras and Jordan C*-algebras, making use the topological and order structures of the corresponding spaces. The results are obtained applying or extending previous classical results and methods of Ayupov, Carath6odory, Cohen, Eberlein, Kakutani and Yosida. Moreover, this results can be applied to continious or positive operators appearing in diffusion theory, quantum mechanics and quantum 13robabilitv theory.
基金Supported by the Key Project of Humanities and Social Research Science Institute of Chongqing Municipal Education Commission(22SKGH432,22SKGH428)2023 Chongqing Education Commission Humanities and Social Sciences Research General Project(23SKGH353)Science and Technology Research Project of Chongqing Education Commission(KJQN202101524)。
文摘The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation operators through adjustments to the parameter k.The hesitant q-rung orthopair set(Hq-ROFSs)can serve as an extension of the existing orthopair fuzzy sets,which provides decision makers more freedom in describing their true opinions.The objective of this paper is to present an MSM operator to aggregate hesitant q-rung orthopair numbers and solve the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant q-rung orthopair fuzzy sets(H-qROFSs).Firstly,the definition of H-qROFSs and some operational laws of H-qROFSs are proposed.Then we develop a family of hesitant q-rung orthopair fuzzy maclaurin symmetric mean aggregation operators,such as the hesitant q-rung orthopair fuzzy maclaurin symmetric mean(Hq-ROFMSM)operator,the hesitant q-rung orthopair fuzzy weighted maclaurin symmetric mean(Hq-ROFWMSM)operator,the hesitant q-rung orthopair fuzzy dual maclaurin symmetric mean(Hq-ROFDMSM)operator,the hesitant q-rung orthopair fuzzy weighted dual maclaurin symmetric mean(Hq-ROFWDMSM)operator.And the properties and special cases of these proposed operators are studied.Furthermore,an approach based on the Hq-ROFWMSM operator is proposed for multiple attribute decision making problems under hesitant q-rung orthopair fuzzy environment.Finally,a numerical example and comparative analysis is given to illustrate the application of the proposed approach.