By virtue of the normal ordering of vacuum projector we directly derive some new complicated operatoridentities, regarding to the generalized Stirling number.
By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antino...By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.展开更多
In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green fun...In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.展开更多
Using the technique of integration within an antinormally ordered product of operators we present a convenient approach for deriving some new operator identities in quantum optics theory. Based on P-representation we ...Using the technique of integration within an antinormally ordered product of operators we present a convenient approach for deriving some new operator identities in quantum optics theory. Based on P-representation we also derive a new formula for evaluating photocount distribution.展开更多
In reference to the Weyl ordering xmpn→ (1/2)m ∑l=0m (ml)Xm-lPnXl , where X and P are coordinate and momentum operator, respectively, this paper examines operators' s-parameterized ordering and its classical co...In reference to the Weyl ordering xmpn→ (1/2)m ∑l=0m (ml)Xm-lPnXl , where X and P are coordinate and momentum operator, respectively, this paper examines operators' s-parameterized ordering and its classical correspondence, finds the fundamental function-operator correspondence (1-s/2)(n+m)/2Hm,n(/2/1-sα,/2/1-sα)→αman and its complementary relation anam→(-i)n+m(1-s/2)(m+n)/2:Hm,n(i√2/1-sa,i√2/1-sa),where Hrn,n is the two-variable Hermite polynomial, a, at are bosonic annihilation and creation operators respectively, s is a complex parameter. The s'-ordered operator power-series expansion of s-ordered operator atraan in terms of the two-variable Hermite polynomial is also derived. Application of operators' s-ordering formula in studying displaced- squeezed chaotic field is discussed.展开更多
In this paper we obtained general representation formulae for strongly continuous cosine operator functions via probabilistic approach,which include Webb's[1]and Shaw's[2]formulae and some new one as special c...In this paper we obtained general representation formulae for strongly continuous cosine operator functions via probabilistic approach,which include Webb's[1]and Shaw's[2]formulae and some new one as special cases.We also give the quantitative estimations for the general formulae.展开更多
By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable ...By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.展开更多
For some complicated graphs obtained by graph operations,it is very difficult to compute resistance distance and Kirchhoff index.Define a new graph operation,and obtain a class of new join graphs:the subdivision-verte...For some complicated graphs obtained by graph operations,it is very difficult to compute resistance distance and Kirchhoff index.Define a new graph operation,and obtain a class of new join graphs:the subdivision-vertex-vertex join G_1* G_2.Then,describe the Laplacian matrix of the graph G_1 * G_2 and use generalized inverse of the Laplacian matrix to get formulas for resistance distance and Kirchhoff index.Through the obtained formulas,the resistance distance of any pairs of vertices and Kirchhoff index of the join graph can be computed.展开更多
Using an operator ordering method for some commutative superposition operators,we introduce two new multi-variable special polynomials and their generating functions,and present some new operator identities and integr...Using an operator ordering method for some commutative superposition operators,we introduce two new multi-variable special polynomials and their generating functions,and present some new operator identities and integral formulas involving the two special polynomials.Instead of calculating compli-cated partial differential,we use the special polynomials and their generating functions to concsely address the normalzation,photoount distributions and Wigner distributions of several quantum states that can be realized physically,the rsults of which provide real convenience for further investigating the properties and applications of these states.展开更多
Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H^(p,q)_A(R^n) associated with A via the non-tangential grand maximal function and then establish...Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H^(p,q)_A(R^n) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on Rn.As applications, we first prove that Hp,q A(Rn) is an intermediate space between H^(p1,q1)_A(Rn) and H^(p2,q2)_A(R^n) with 0 < p1 < p < p2 < ∞ and q1, q, q2 ∈(0, ∞], and also between H^(p,q1)_A(Rn) and H^(p,q2)_A(R^n) with p ∈(0, ∞)and 0 < q1 < q < q2 ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from H^(p,q)_A(R^n) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calder′on-Zygmund operators from H^(p,∞)_A(R^n) to the weak Lebesgue space L^(p,∞)(R^n)(or to H^p_A(R^n)) in the ln λcritical case, from H^(p,q)_A(R^n) to L^(p,q)(R^n)(or to H^(p,q)_A(R^n)) with δ∈(0,(lnλ)/(ln b)], p ∈(1/(1+,δ),1] and q ∈(0, ∞], as well as the boundedness of some Calderon-Zygmund operators from H^(p,q)_A(R^n) to L^(p,∞)(R^n), where b := | det A|,λ_:= min{|λ| : λ∈σ(A)} and σ(A) denotes the set of all eigenvalues of A.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.10874174 and 10947017/A05 the Specialized Research Fund for the Doctorial Progress of Higher Education of China under Grant No.20070358009
文摘By virtue of the normal ordering of vacuum projector we directly derive some new complicated operatoridentities, regarding to the generalized Stirling number.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)
文摘By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.
文摘In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10775097 and 10874174
文摘Using the technique of integration within an antinormally ordered product of operators we present a convenient approach for deriving some new operator identities in quantum optics theory. Based on P-representation we also derive a new formula for evaluating photocount distribution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)
文摘In reference to the Weyl ordering xmpn→ (1/2)m ∑l=0m (ml)Xm-lPnXl , where X and P are coordinate and momentum operator, respectively, this paper examines operators' s-parameterized ordering and its classical correspondence, finds the fundamental function-operator correspondence (1-s/2)(n+m)/2Hm,n(/2/1-sα,/2/1-sα)→αman and its complementary relation anam→(-i)n+m(1-s/2)(m+n)/2:Hm,n(i√2/1-sa,i√2/1-sa),where Hrn,n is the two-variable Hermite polynomial, a, at are bosonic annihilation and creation operators respectively, s is a complex parameter. The s'-ordered operator power-series expansion of s-ordered operator atraan in terms of the two-variable Hermite polynomial is also derived. Application of operators' s-ordering formula in studying displaced- squeezed chaotic field is discussed.
文摘In this paper we obtained general representation formulae for strongly continuous cosine operator functions via probabilistic approach,which include Webb's[1]and Shaw's[2]formulae and some new one as special cases.We also give the quantitative estimations for the general formulae.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)
文摘By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.
基金National Natural Science Foundation of China(No.11361033)
文摘For some complicated graphs obtained by graph operations,it is very difficult to compute resistance distance and Kirchhoff index.Define a new graph operation,and obtain a class of new join graphs:the subdivision-vertex-vertex join G_1* G_2.Then,describe the Laplacian matrix of the graph G_1 * G_2 and use generalized inverse of the Laplacian matrix to get formulas for resistance distance and Kirchhoff index.Through the obtained formulas,the resistance distance of any pairs of vertices and Kirchhoff index of the join graph can be computed.
基金the National Natural Science Foundation of China(Grant No.11347026)the Natural Science Foundation of Shandong Province(Grant Nos.ZR2016AM03 and ZR2017M A011).
文摘Using an operator ordering method for some commutative superposition operators,we introduce two new multi-variable special polynomials and their generating functions,and present some new operator identities and integral formulas involving the two special polynomials.Instead of calculating compli-cated partial differential,we use the special polynomials and their generating functions to concsely address the normalzation,photoount distributions and Wigner distributions of several quantum states that can be realized physically,the rsults of which provide real convenience for further investigating the properties and applications of these states.
基金supported by National Natural Science Foundation of China (Grant Nos. 11571039, 11361020 and 11471042)
文摘Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H^(p,q)_A(R^n) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on Rn.As applications, we first prove that Hp,q A(Rn) is an intermediate space between H^(p1,q1)_A(Rn) and H^(p2,q2)_A(R^n) with 0 < p1 < p < p2 < ∞ and q1, q, q2 ∈(0, ∞], and also between H^(p,q1)_A(Rn) and H^(p,q2)_A(R^n) with p ∈(0, ∞)and 0 < q1 < q < q2 ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from H^(p,q)_A(R^n) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calder′on-Zygmund operators from H^(p,∞)_A(R^n) to the weak Lebesgue space L^(p,∞)(R^n)(or to H^p_A(R^n)) in the ln λcritical case, from H^(p,q)_A(R^n) to L^(p,q)(R^n)(or to H^(p,q)_A(R^n)) with δ∈(0,(lnλ)/(ln b)], p ∈(1/(1+,δ),1] and q ∈(0, ∞], as well as the boundedness of some Calderon-Zygmund operators from H^(p,q)_A(R^n) to L^(p,∞)(R^n), where b := | det A|,λ_:= min{|λ| : λ∈σ(A)} and σ(A) denotes the set of all eigenvalues of A.