Let A ∈ B(X) and B ∈ B(Y), Me be an operator on Banach space X + Y given by Mc =(A C 0 B)A generalized Drazin spectrum defined by σgD(T) = {λ∈C : T-λI is not generalized Drazin invertible} is considere...Let A ∈ B(X) and B ∈ B(Y), Me be an operator on Banach space X + Y given by Mc =(A C 0 B)A generalized Drazin spectrum defined by σgD(T) = {λ∈C : T-λI is not generalized Drazin invertible} is considered in this paper. It is shown that展开更多
A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of s...A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of solving symplectic elasticity problems by using the method of separation of variables. Moreover, the theoretical result is applied to two plane elasticity problems via the separable Hamiltonian systems.展开更多
Let Mc = ( A0CB ) be a 2 × 2 upper triangular operator matrix acting on the Banach space X × Y. We prove that σr(A) ∪ σr( B)= σr (Mc) ∪ W ,where W is the union of certain of the holes in σr(Mc...Let Mc = ( A0CB ) be a 2 × 2 upper triangular operator matrix acting on the Banach space X × Y. We prove that σr(A) ∪ σr( B)= σr (Mc) ∪ W ,where W is the union of certain of the holes in σr(Mc) which happen to be subsets of σr(A) ∩ σr(B), and σr(A), σr(B), σr(Mc) can be equal to the Browder or essential spectra of A, B, Mc, respectively. We also show that the above result isn't true for the Kato spectrum, left (right) essential spectrum and left (right) spectrum.展开更多
In this paper, we study the perturbation of spectra for 2 ×2 operator matrices such as Mx ={A0 XB) AC and Mz = (Az CB) on the Hilbert space H K and the sets……
Let H1, H2 and H3 be infinite dimensional separable complex Hilbert spaces. We denote by M(D,V,F) a 3×3 upper triangular operator matrix acting on Hi +H2+ H3 of theform M(D,E,F)=(A D F 0 B F 0 0 C).For gi...Let H1, H2 and H3 be infinite dimensional separable complex Hilbert spaces. We denote by M(D,V,F) a 3×3 upper triangular operator matrix acting on Hi +H2+ H3 of theform M(D,E,F)=(A D F 0 B F 0 0 C).For given A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3), the sets ∪D,E,F^σp(M(D,E,F)),∪D,E,F ^σr(M(D,E,F)),∪D,E,F ^σc(M(D,E,F)) and ∪D,E,F σ(M(D,E,F)) are characterized, where D ∈ B(H2,H1), E ∈B(H3, H1), F ∈ B(H3,H2) and σ(·), σp(·), σr(·), σc(·) denote the spectrum, the point spectrum, the residual spectrum and the continuous spectrum, respectively.展开更多
Let MX=(A C X B )be a 2×2 operator matrix acting on the Hilbert space H+K. For given A∈B(H),B∈B(K)and C∈B(K,H)the set UX∈B(H,K)^σe(MX)is determined, whereσe(T)denotes the essential spectrum.
In this paper, we discuss some singulal integral operators, singular quadrature operators and discrethation matrices associated with singular integral equations of the first kind, and obtain some useful Properties for...In this paper, we discuss some singulal integral operators, singular quadrature operators and discrethation matrices associated with singular integral equations of the first kind, and obtain some useful Properties for them. Using these operators we give a unified framework for various collocation methods of numerical solutions of singular integral equations of the fine kind, which appears very simple.展开更多
In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legen...In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices.Further,operational matrices are constructed using variable order differentiation and integration.We are finding the operationalmatrices of variable order differentiation and integration by omitting the discretization of data.With the help of aforesaid matrices,considered FDEs are converted to algebraic equations of Sylvester type.Finally,the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions.Some examples are given to check the proposed method’s accuracy and graphical representations.Exact and numerical solutions are also compared in the paper for some examples.The efficiency of the method can be enhanced further by increasing the scale level.展开更多
In this paper,we introduced a numerical approach for solving the fractional differential equations with a type of variable-order Hilfer-Prabhakar derivative of orderμ(t)andν(t).The proposed method is based on the Ja...In this paper,we introduced a numerical approach for solving the fractional differential equations with a type of variable-order Hilfer-Prabhakar derivative of orderμ(t)andν(t).The proposed method is based on the Jacobi wavelet collocation method.According to this method,an operational matrix is constructed.We use this operational matrix of the fractional derivative of variable-order to reduce the solution of the linear fractional equations to the system of algebraic equations.Theoretical considerations are discussed.Finally,some numerical examples are presented to demonstrate the accuracy of the proposed method.展开更多
Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature ...Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit.展开更多
基金Supported by the National Natural Science Foundation of China(11301077,1117131,11171066 and11226113)Foundation of the Education Department of Fujian Province(JA12074)the Natural ScienceFoundation of Fujian Province(2012J05003)
文摘Let A ∈ B(X) and B ∈ B(Y), Me be an operator on Banach space X + Y given by Mc =(A C 0 B)A generalized Drazin spectrum defined by σgD(T) = {λ∈C : T-λI is not generalized Drazin invertible} is considered in this paper. It is shown that
基金supported by the National Natural Science Foundation of China (Grant Nos. 11361034 and 11371185)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111501110001)the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2012MS0105 and 2013ZD01 )
文摘A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of solving symplectic elasticity problems by using the method of separation of variables. Moreover, the theoretical result is applied to two plane elasticity problems via the separable Hamiltonian systems.
基金the National Natural Science Foundation of China (Grants NO.10471025,NO.10771034)the Natural Science Foundation of Fujian Province of China(Grant NO.S0650009)+1 种基金the Education Department Foundation of Fujian Province of China (Grants NO.JA05211,NO.JB06026)the Foundation of Technology and Development of Fuzhou University(Grant NO.2007-XY-11)
文摘Let Mc = ( A0CB ) be a 2 × 2 upper triangular operator matrix acting on the Banach space X × Y. We prove that σr(A) ∪ σr( B)= σr (Mc) ∪ W ,where W is the union of certain of the holes in σr(Mc) which happen to be subsets of σr(A) ∩ σr(B), and σr(A), σr(B), σr(Mc) can be equal to the Browder or essential spectra of A, B, Mc, respectively. We also show that the above result isn't true for the Kato spectrum, left (right) essential spectrum and left (right) spectrum.
基金Supported by the National Natural Science Foundation of China(No.10962004)Tianyuan Fund for Mathematics(No.11126307)+2 种基金the National Natural Science Foundation of Inner Mongolia(No.2011MS0104, 2012MS0105)the Research Program of Science at Universities of Inner Mongolia Autonomous Region(No.NJZZ11011)Program of Higher-level Talents of Inner Mongolia University(No.Z20100116)
文摘In this paper, we study the perturbation of spectra for 2 ×2 operator matrices such as Mx ={A0 XB) AC and Mz = (Az CB) on the Hilbert space H K and the sets……
基金the National Natural Science Foundation of China (No.10562002)the Specialized Research Foundation for the Doctoral Program of Higher Education (No.20070126002)the Scientific Research Foun-dation for the Returned Overseas Chinese Scholars
文摘Let H1, H2 and H3 be infinite dimensional separable complex Hilbert spaces. We denote by M(D,V,F) a 3×3 upper triangular operator matrix acting on Hi +H2+ H3 of theform M(D,E,F)=(A D F 0 B F 0 0 C).For given A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3), the sets ∪D,E,F^σp(M(D,E,F)),∪D,E,F ^σr(M(D,E,F)),∪D,E,F ^σc(M(D,E,F)) and ∪D,E,F σ(M(D,E,F)) are characterized, where D ∈ B(H2,H1), E ∈B(H3, H1), F ∈ B(H3,H2) and σ(·), σp(·), σr(·), σc(·) denote the spectrum, the point spectrum, the residual spectrum and the continuous spectrum, respectively.
基金Foundation item: the National Natural Science Foundation of China (No. 10726043).
文摘Let MX=(A C X B )be a 2×2 operator matrix acting on the Hilbert space H+K. For given A∈B(H),B∈B(K)and C∈B(K,H)the set UX∈B(H,K)^σe(MX)is determined, whereσe(T)denotes the essential spectrum.
文摘In this paper, we discuss some singulal integral operators, singular quadrature operators and discrethation matrices associated with singular integral equations of the first kind, and obtain some useful Properties for them. Using these operators we give a unified framework for various collocation methods of numerical solutions of singular integral equations of the fine kind, which appears very simple.
基金Supporting Project No.(PNURSP2022R 14),Princess Nourah bint A bdurahman University,Riyadh,Saudi Arabia.
文摘In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices.Further,operational matrices are constructed using variable order differentiation and integration.We are finding the operationalmatrices of variable order differentiation and integration by omitting the discretization of data.With the help of aforesaid matrices,considered FDEs are converted to algebraic equations of Sylvester type.Finally,the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions.Some examples are given to check the proposed method’s accuracy and graphical representations.Exact and numerical solutions are also compared in the paper for some examples.The efficiency of the method can be enhanced further by increasing the scale level.
文摘In this paper,we introduced a numerical approach for solving the fractional differential equations with a type of variable-order Hilfer-Prabhakar derivative of orderμ(t)andν(t).The proposed method is based on the Jacobi wavelet collocation method.According to this method,an operational matrix is constructed.We use this operational matrix of the fractional derivative of variable-order to reduce the solution of the linear fractional equations to the system of algebraic equations.Theoretical considerations are discussed.Finally,some numerical examples are presented to demonstrate the accuracy of the proposed method.
基金National Natural Science Foundation of China(No.60974119)
文摘Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit.