Considering that the controller feedback gain and the observer gain are of additive norm-bounded variations, a design method of observer-based H-infinity output feedback controller for uncertain Delta operator systems...Considering that the controller feedback gain and the observer gain are of additive norm-bounded variations, a design method of observer-based H-infinity output feedback controller for uncertain Delta operator systems is proposed in this paper. A sufficient condition of such controllers is presented in linear matrix inequality (LMI) forms. A numerical example is then given to illustrate the effectiveness of this method, that is, the obtained controller guarantees the closed-loop system asymptotically stable and the expected H-infinity performance even if the controller feedback gain and the observer gain are varied.展开更多
By using the theory of the cone and partial ordering. It is studied that the existence and uniqueness of solutions for a non-monotone binary operator equation A(x, x)= x and operator system of equations A(x,x)=x,B(x,x...By using the theory of the cone and partial ordering. It is studied that the existence and uniqueness of solutions for a non-monotone binary operator equation A(x, x)= x and operator system of equations A(x,x)=x,B(x,x)=x in Banach spaces. Where A and B can be decomposed A=A1+A2, B=B1+B2,A1 and B1 are mixed monotone, A2 and B2 are anti-mixed monotone. The results presented here improve and generalize some corresponding results of mixed monotone operator equations.展开更多
The problem of H∞ filtering for polytopic Delta operator linear systems is investigated. An improved H∞ performance criterion is presented based on the bounded real lemma. Upon the improved performance criterion, a ...The problem of H∞ filtering for polytopic Delta operator linear systems is investigated. An improved H∞ performance criterion is presented based on the bounded real lemma. Upon the improved performance criterion, a sufficient condition for the existence of parameter-dependent H∞ filtering is derived in terms of linear matrix inequalities. The designed filter can be obtained from the solution of a convex optimization problem. The filter design makes full use of the parameter-dependent approach, which leads to a less conservative result than conventional design methods. A numerical example is given to illustrate the effectiveness of the proposed approach.展开更多
We consider a first order periodic system in R^(N),involving a time dependent maximal monotone operator which need not have a full domain and a multivalued perturbation.We prove the existence theorems for both the con...We consider a first order periodic system in R^(N),involving a time dependent maximal monotone operator which need not have a full domain and a multivalued perturbation.We prove the existence theorems for both the convex and nonconvex problems.We also show the existence of extremal periodic solutions and provide a strong relaxation theorem.Finally,we provide an application to nonlinear periodic control systems.展开更多
Powered by advanced information industry and intelligent technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).And human factors have become crucial in the ...Powered by advanced information industry and intelligent technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).And human factors have become crucial in the operations of complex social systems.Traditional mechanical analysis and social simulations alone are powerless for analyzing complex social systems.Against this backdrop,computational experiments have emerged as a new method for quantitative analysis of complex social systems by combining social simulation(e.g.,ABM),complexity science,and domain knowledge.However,in the process of applying computational experiments,the construction of experiment system not only considers a large number of artificial society models,but also involves a large amount of data and knowledge.As a result,how to integrate various data,model and knowledge to achieve a running experiment system has become a key challenge.This paper proposes an integrated design framework of computational experiment system,which is composed of four parts:generation of digital subject,generation of digital object,design of operation engine,and construction of experiment system.Finally,this paper outlines a typical case study of coal mine emergency management to verify the validity of the proposed framework.展开更多
New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model arei...New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.展开更多
In a global dynamic analysis,the coexisting attractors and their basins are the main tools to understand the system behavior and safety.However,both basins and attractors can be drastically influenced by uncertainties...In a global dynamic analysis,the coexisting attractors and their basins are the main tools to understand the system behavior and safety.However,both basins and attractors can be drastically influenced by uncertainties.The aim of this work is to illustrate a methodology for the global dynamic analysis of nondeterministic dynamical systems with competing attractors.Accordingly,analytical and numerical tools for calculation of nondeterministic global structures,namely attractors and basins,are proposed.First,based on the definition of the Perron-Frobenius,Koopman and Foias linear operators,a global dynamic description through phase-space operators is presented for both deterministic and nondeterministic cases.In this context,the stochastic basins of attraction and attractors’distributions replace the usual basin and attractor concepts.Then,numerical implementation of these concepts is accomplished via an adaptative phase-space discretization strategy based on the classical Ulam method.Sample results of the methodology are presented for a canonical dynamical system.展开更多
Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this p...Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.展开更多
Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new f...Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.展开更多
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinearSchr¨odinger equation with the sextic operator under non-zero boundary conditions. Our analysis...We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinearSchr¨odinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.展开更多
Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and...In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.展开更多
Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varyi...Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.展开更多
In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,...In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.展开更多
For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f...For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.展开更多
In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO a...In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.展开更多
Consider a pseudo-differential operator T_(a)f(x)=∫_(R^(n))e^(ix,ζ)a(x,ζ)f(ζ)dζwhere the symbol a is in the rough Hormander class L^(∞)S_(ρ)^(m)with m∈R andρ∈[0,1].In this note,when 1≤p≤2,if n(ρ-1)/p and ...Consider a pseudo-differential operator T_(a)f(x)=∫_(R^(n))e^(ix,ζ)a(x,ζ)f(ζ)dζwhere the symbol a is in the rough Hormander class L^(∞)S_(ρ)^(m)with m∈R andρ∈[0,1].In this note,when 1≤p≤2,if n(ρ-1)/p and a∈L^(∞)S_(ρ)^(m),then for any f∈S(R^(n))and x∈R^(n),we prove that M(T_(a)f)(x)≤C(M(|f|^(p))(x))^(1/p) where M is the Hardy-Littlewood maximal operator.Our theorem improves the known results and the bound on m is sharp,in the sense that n(ρ-1)/p can not be replaced by a larger constant.展开更多
Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted...Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.展开更多
基金supported by the Natural Science Foundation of Fujian Province (No.2008J04016)the Fujian Education Bureau Foundation (No.JA07075)
文摘Considering that the controller feedback gain and the observer gain are of additive norm-bounded variations, a design method of observer-based H-infinity output feedback controller for uncertain Delta operator systems is proposed in this paper. A sufficient condition of such controllers is presented in linear matrix inequality (LMI) forms. A numerical example is then given to illustrate the effectiveness of this method, that is, the obtained controller guarantees the closed-loop system asymptotically stable and the expected H-infinity performance even if the controller feedback gain and the observer gain are varied.
基金Supported by the Scientific Research Foundation of Henan Provincial Education Com mittee(1999110018)
文摘By using the theory of the cone and partial ordering. It is studied that the existence and uniqueness of solutions for a non-monotone binary operator equation A(x, x)= x and operator system of equations A(x,x)=x,B(x,x)=x in Banach spaces. Where A and B can be decomposed A=A1+A2, B=B1+B2,A1 and B1 are mixed monotone, A2 and B2 are anti-mixed monotone. The results presented here improve and generalize some corresponding results of mixed monotone operator equations.
文摘The problem of H∞ filtering for polytopic Delta operator linear systems is investigated. An improved H∞ performance criterion is presented based on the bounded real lemma. Upon the improved performance criterion, a sufficient condition for the existence of parameter-dependent H∞ filtering is derived in terms of linear matrix inequalities. The designed filter can be obtained from the solution of a convex optimization problem. The filter design makes full use of the parameter-dependent approach, which leads to a less conservative result than conventional design methods. A numerical example is given to illustrate the effectiveness of the proposed approach.
基金supported by the NSFC(12071413)the Guangxi Natural Sci-ence Foundation(2023GXNSFAA026085)the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECH。
文摘We consider a first order periodic system in R^(N),involving a time dependent maximal monotone operator which need not have a full domain and a multivalued perturbation.We prove the existence theorems for both the convex and nonconvex problems.We also show the existence of extremal periodic solutions and provide a strong relaxation theorem.Finally,we provide an application to nonlinear periodic control systems.
基金supported in part by the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+3 种基金Open Research Fund of The State Key Laboratory for Management and Control of Complex Systems(20210101)New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)Tianjin University Talent InnovationReward Program for Literature&Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information industry and intelligent technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).And human factors have become crucial in the operations of complex social systems.Traditional mechanical analysis and social simulations alone are powerless for analyzing complex social systems.Against this backdrop,computational experiments have emerged as a new method for quantitative analysis of complex social systems by combining social simulation(e.g.,ABM),complexity science,and domain knowledge.However,in the process of applying computational experiments,the construction of experiment system not only considers a large number of artificial society models,but also involves a large amount of data and knowledge.As a result,how to integrate various data,model and knowledge to achieve a running experiment system has become a key challenge.This paper proposes an integrated design framework of computational experiment system,which is composed of four parts:generation of digital subject,generation of digital object,design of operation engine,and construction of experiment system.Finally,this paper outlines a typical case study of coal mine emergency management to verify the validity of the proposed framework.
基金Lucian Blaga University of Sibiu&Hasso Plattner Foundation Research Grants LBUS-IRG-2020-06.
文摘New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.
基金support of the Brazil-ian research agencies,the National Council for Scientific and Technological Development (CNPq)(Nos. 301355/2018-5 and 200198/2022-0)FAPERJ-CNE (No. E-26/202.711/2018)+1 种基金FAPERJ Nota 10 (No. E-26/200.357/2020)CAPES (Finance code 001 and 88881.310620/2018-01)。
文摘In a global dynamic analysis,the coexisting attractors and their basins are the main tools to understand the system behavior and safety.However,both basins and attractors can be drastically influenced by uncertainties.The aim of this work is to illustrate a methodology for the global dynamic analysis of nondeterministic dynamical systems with competing attractors.Accordingly,analytical and numerical tools for calculation of nondeterministic global structures,namely attractors and basins,are proposed.First,based on the definition of the Perron-Frobenius,Koopman and Foias linear operators,a global dynamic description through phase-space operators is presented for both deterministic and nondeterministic cases.In this context,the stochastic basins of attraction and attractors’distributions replace the usual basin and attractor concepts.Then,numerical implementation of these concepts is accomplished via an adaptative phase-space discretization strategy based on the classical Ulam method.Sample results of the methodology are presented for a canonical dynamical system.
文摘Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.
基金supported by the NSFC(11971475)the Natural Science Foundation of Jiangsu Province(BK20230708)+2 种基金the Natural Science Foundation for the Universities in Jiangsu Province(23KJB110003)Geng's research was supported by the NSFC(11201041)the China Postdoctoral Science Foundation(2019M651765)。
文摘Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.
基金the Fundamental Research Funds for the Central Universities(Grant No.2024MS126).
文摘We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinearSchr¨odinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
文摘In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.
基金supported by the National Key Research and Development Program of China(2022YFA1503501)the National Natural Science Foundation of China(22378112,22278127,and 22078088)+1 种基金the Fundamental Research Funds for the Central Universities(2022ZFJH004)the Shanghai Rising-Star Program(21QA1401900).
文摘Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.
基金supported by the Natural Science Foundation of Guangdong Province(2021A1515010058)。
文摘In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.
文摘For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.
基金supported by the National Natural Science Foundation of China(12271101)。
文摘In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.
基金Supported by the National Natural Science Foundation of China(11871436,12071437)。
文摘Consider a pseudo-differential operator T_(a)f(x)=∫_(R^(n))e^(ix,ζ)a(x,ζ)f(ζ)dζwhere the symbol a is in the rough Hormander class L^(∞)S_(ρ)^(m)with m∈R andρ∈[0,1].In this note,when 1≤p≤2,if n(ρ-1)/p and a∈L^(∞)S_(ρ)^(m),then for any f∈S(R^(n))and x∈R^(n),we prove that M(T_(a)f)(x)≤C(M(|f|^(p))(x))^(1/p) where M is the Hardy-Littlewood maximal operator.Our theorem improves the known results and the bound on m is sharp,in the sense that n(ρ-1)/p can not be replaced by a larger constant.
基金supported by the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the National Natural Science Foundation of China(12071431)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.