The water snail Pomacea canaliculata retracts the discoidal and multi-layered operculum to protect the soft body from being attacked by predators,and releases it when threats lifted.However,the duration of the opercul...The water snail Pomacea canaliculata retracts the discoidal and multi-layered operculum to protect the soft body from being attacked by predators,and releases it when threats lifted.However,the duration of the operculum retraction is usually less than that of the operculum protraction.In this paper,we elucidate the biological compliant mechanism of the operculum.By using confocal laser scanning microscopy,we find that the operculum has compliant sandwiched layers between hard layers.The layered structure results in a compliant mechanism with a bidirectional stiffness for the locking and unlocking processes of the operculum.A mathematical model is derived to rationalize the bidirectional stiffness mechanism of the operculum.In addition,we carry out the experiments on the locking and unlocking processes.The experimental results show that the locking tension is about two-fifths of the unlocking tension of the operculum.Moreover,based on the mechanical properties of the operculum with the layered structure,we designed an operculum-inspired structure,which may have a variety of potential applications in combined driving patterns.展开更多
Water snails developed a distinct appendage, the operculum, to better protect the body against predators. When the animal is active and crawling, part of the underside of the shell rests on the outer surface of the op...Water snails developed a distinct appendage, the operculum, to better protect the body against predators. When the animal is active and crawling, part of the underside of the shell rests on the outer surface of the operculum. We observed the water snails (Pomacea canaliculata) spend -3 hours per day foraging, and the relative angular velocity between the shell and operculum can reach up to 10°·s^-1, which might inevitably lead to abrasion on the shell and operculum interface. However, by electron microscopy images, we found that the underside of the shell and outer surface of the operculum is not severely worn, which indicates that this animal might have a strategy to reduce wear. We discovered the superimposed rings distributed concentrically on the surface, which can generate micro-grooves for a hydrodynamic lubrication. We theoretically and experimentally revealed the mechanism of drag reduction combing the groove geometry and hydrodynamics. This textured operculum surface might provide a friction coefficient up to 0.012 as a stability-resilience, which protects the structure of the snail's shell and operculum. This mechanism might open up new paths for studies of micro-anti-wear structures used in liquid media.展开更多
基金supported by National Natural Science Foundation of China(Grant No.52275298,and No.51905556)Pandeng Plan of Guangdong Province(Grant No.52910001,and No.11220004)Shenzhen Science and Technology Program(Grant No.GXWD2021B03,No.20220817165030002,and No.ZDSYS20210623091808026).
文摘The water snail Pomacea canaliculata retracts the discoidal and multi-layered operculum to protect the soft body from being attacked by predators,and releases it when threats lifted.However,the duration of the operculum retraction is usually less than that of the operculum protraction.In this paper,we elucidate the biological compliant mechanism of the operculum.By using confocal laser scanning microscopy,we find that the operculum has compliant sandwiched layers between hard layers.The layered structure results in a compliant mechanism with a bidirectional stiffness for the locking and unlocking processes of the operculum.A mathematical model is derived to rationalize the bidirectional stiffness mechanism of the operculum.In addition,we carry out the experiments on the locking and unlocking processes.The experimental results show that the locking tension is about two-fifths of the unlocking tension of the operculum.Moreover,based on the mechanical properties of the operculum with the layered structure,we designed an operculum-inspired structure,which may have a variety of potential applications in combined driving patterns.
文摘Water snails developed a distinct appendage, the operculum, to better protect the body against predators. When the animal is active and crawling, part of the underside of the shell rests on the outer surface of the operculum. We observed the water snails (Pomacea canaliculata) spend -3 hours per day foraging, and the relative angular velocity between the shell and operculum can reach up to 10°·s^-1, which might inevitably lead to abrasion on the shell and operculum interface. However, by electron microscopy images, we found that the underside of the shell and outer surface of the operculum is not severely worn, which indicates that this animal might have a strategy to reduce wear. We discovered the superimposed rings distributed concentrically on the surface, which can generate micro-grooves for a hydrodynamic lubrication. We theoretically and experimentally revealed the mechanism of drag reduction combing the groove geometry and hydrodynamics. This textured operculum surface might provide a friction coefficient up to 0.012 as a stability-resilience, which protects the structure of the snail's shell and operculum. This mechanism might open up new paths for studies of micro-anti-wear structures used in liquid media.