Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpans...Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.展开更多
The purpose of this paper is to study the weak convergence problems of the implicity iteration process for Lipschitzian pseudocontractive semi-groups in the general Banach spaces. The results presented in this paper e...The purpose of this paper is to study the weak convergence problems of the implicity iteration process for Lipschitzian pseudocontractive semi-groups in the general Banach spaces. The results presented in this paper extend and improve the corresponding results of some people.展开更多
In this paper, we consider an explicit iteration scheme with perturbed mapping for nonexpansive mappings in real q-uniformly smooth Banach spaces. Some weak and strong convergence theorems for this explicit iteration ...In this paper, we consider an explicit iteration scheme with perturbed mapping for nonexpansive mappings in real q-uniformly smooth Banach spaces. Some weak and strong convergence theorems for this explicit iteration scheme are established. In particular, necessary and sufficient conditions for strong convergence of this explicit iteration scheme are obtained. At last, some useful corollaries for strong convergence of this explicit iteration scheme are given.展开更多
The purpose of this paper is to study the weak convergence problems of the irnplicity iteration process for Lipschitzian pseudocontraction semigroups in general Banach spaces. The results presented in this paper exten...The purpose of this paper is to study the weak convergence problems of the irnplicity iteration process for Lipschitzian pseudocontraction semigroups in general Banach spaces. The results presented in this paper extend and improve the corresponding results of Zhou [Nonlinear Anal., 68, 2977-2983 (2008)], Chen, et ah [J. Math. Anal. Appl., 314, 701 709 (2006)], Xu and Ori [Numer. Funct. Anal. Optim, 22, 767-773 (2001)] and Osilike [J. Math. Anal. Appl., 294, 73-81 (2004)]. Keywords展开更多
A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty ...A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty closed convex subsets of uniformly convex Banach spaces are established. The results presented in this paper substantially extend the results due to Chang (2001), Osilike and Aniagbosor (2000), Rhoades (1994) and Schu (1991).展开更多
基金Supported both by the National Natural Science Foundation(1 980 1 0 2 3 ) and the Teaching and ResearchAward Fund for Outstanding Young Teachers in Higher Education Institutions of MOEP.R.C
文摘Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.
基金supported by the Natural Science Foundation of Yibin University (No. 2007Z3)
文摘The purpose of this paper is to study the weak convergence problems of the implicity iteration process for Lipschitzian pseudocontractive semi-groups in the general Banach spaces. The results presented in this paper extend and improve the corresponding results of some people.
文摘In this paper, we consider an explicit iteration scheme with perturbed mapping for nonexpansive mappings in real q-uniformly smooth Banach spaces. Some weak and strong convergence theorems for this explicit iteration scheme are established. In particular, necessary and sufficient conditions for strong convergence of this explicit iteration scheme are obtained. At last, some useful corollaries for strong convergence of this explicit iteration scheme are given.
基金Supported by Natural Science Foundation of Yibin University (Grant No. 2009Z3)
文摘The purpose of this paper is to study the weak convergence problems of the irnplicity iteration process for Lipschitzian pseudocontraction semigroups in general Banach spaces. The results presented in this paper extend and improve the corresponding results of Zhou [Nonlinear Anal., 68, 2977-2983 (2008)], Chen, et ah [J. Math. Anal. Appl., 314, 701 709 (2006)], Xu and Ori [Numer. Funct. Anal. Optim, 22, 767-773 (2001)] and Osilike [J. Math. Anal. Appl., 294, 73-81 (2004)]. Keywords
基金supported by Korea Research Foundation Grant(KRF-2001-005-D00002)
文摘A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty closed convex subsets of uniformly convex Banach spaces are established. The results presented in this paper substantially extend the results due to Chang (2001), Osilike and Aniagbosor (2000), Rhoades (1994) and Schu (1991).