With the continuous development of e-commerce,consumers show increasing interest in posting comments on consumption experience and quality of commodities.Meanwhile,people make purchasing decisions relying on other com...With the continuous development of e-commerce,consumers show increasing interest in posting comments on consumption experience and quality of commodities.Meanwhile,people make purchasing decisions relying on other comments much more than ever before.So the reliability of commodity comments has a significant impact on ensuring consumers’equity and building a fair internet-trade-environment.However,some unscrupulous online-sellers write fake praiseful reviews for themselves and malicious comments for their business counterparts to maximize their profits.Those improper ways of self-profiting have severely ruined the entire online shopping industry.Aiming to detect and prevent these deceptive comments effectively,we construct a model of Multi-Filters Convolutional Neural Network(MFCNN)for opinion spam detection.MFCNN is designed with a fixed-length sequence input and an improved activation function to avoid the gradient vanishing problem in spam opinion detection.Moreover,convolution filters with different widths are used in MFCNN to represent the sentences and documents.Our experimental results show that MFCNN outperforms current state-of-the-art methods on standard spam detection benchmarks.展开更多
基金This work is supported by The National Key Research and Development Program of China(2018YFB1800202,2016YFB1000302,SQ2019ZD090149,2018YFB0204301).
文摘With the continuous development of e-commerce,consumers show increasing interest in posting comments on consumption experience and quality of commodities.Meanwhile,people make purchasing decisions relying on other comments much more than ever before.So the reliability of commodity comments has a significant impact on ensuring consumers’equity and building a fair internet-trade-environment.However,some unscrupulous online-sellers write fake praiseful reviews for themselves and malicious comments for their business counterparts to maximize their profits.Those improper ways of self-profiting have severely ruined the entire online shopping industry.Aiming to detect and prevent these deceptive comments effectively,we construct a model of Multi-Filters Convolutional Neural Network(MFCNN)for opinion spam detection.MFCNN is designed with a fixed-length sequence input and an improved activation function to avoid the gradient vanishing problem in spam opinion detection.Moreover,convolution filters with different widths are used in MFCNN to represent the sentences and documents.Our experimental results show that MFCNN outperforms current state-of-the-art methods on standard spam detection benchmarks.