期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System 被引量:1
1
作者 Laith Abualigah Serdar Ekinci +1 位作者 Davut Izci Raed Abu Zitar 《Intelligent Automation & Soft Computing》 2023年第11期169-183,共15页
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-... Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area. 展开更多
关键词 Cruise control system FOPID controller artificial hummingbird algorithm elite opposition-based learning
下载PDF
An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction
2
作者 Xiang Wang Liangsa Wang +1 位作者 Han Li Yibin Guo 《Computers, Materials & Continua》 SCIE EI 2023年第12期2935-2969,共35页
The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algo... The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algorithm called OLCHWOA,incorporating a chaos mechanism and an opposition-based learning strategy.This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase,thereby enhancing the quality of the initial whale population.Additionally,including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations.The work and contributions of this paper are primarily reflected in two aspects.Firstly,an improved whale algorithm with enhanced development capabilities and a wide range of application scenarios is proposed.Secondly,the proposed OLCHWOA is used to optimize the hyperparameters of the Long Short-Term Memory(LSTM)networks.Subsequently,a prediction model for Realized Volatility(RV)based on OLCHWOA-LSTM is proposed to optimize hyperparameters automatically.To evaluate the performance of OLCHWOA,a series of comparative experiments were conducted using a variety of advanced algorithms.These experiments included 38 standard test functions from CEC2013 and CEC2019 and three constrained engineering design problems.The experimental results show that OLCHWOA ranks first in accuracy and stability under the same maximum fitness function calls budget.Additionally,the China Securities Index 300(CSI 300)dataset is used to evaluate the effectiveness of the proposed OLCHWOA-LSTM model in predicting RV.The comparison results with the other eight models show that the proposed model has the highest accuracy and goodness of fit in predicting RV.This further confirms that OLCHWOA effectively addresses real-world optimization problems. 展开更多
关键词 Whale optimization algorithm chaos mechanism opposition-based learning long short-term memory realized volatility
下载PDF
Hybrid heuristic algorithm for multi-objective scheduling problem 被引量:3
3
作者 PENG Jian'gang LIU Mingzhou +1 位作者 ZHANG Xi LING Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期327-342,共16页
This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-object... This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP. 展开更多
关键词 flexible JOB-SHOP scheduling HARMONY SEARCH (HS) algorithm PARETO OPTIMALITY opposition-based learning
下载PDF
Removal of Ocular Artifacts from Electroencephalo-Graph by Improving Variational Mode Decomposition 被引量:1
4
作者 Miao Shi Chao Wang +3 位作者 Wei Zhao Xinshi Zhang Ye Ye Nenggang Xie 《China Communications》 SCIE CSCD 2022年第2期47-61,共15页
Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing metho... Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30. 展开更多
关键词 ocular artifact variational mode decomposition squirrel search algorithm global guidance ability opposition-based learning
下载PDF
An Improved Harris Hawks Optimization Algorithm with Multi-strategy for Community Detection in Social Network 被引量:3
5
作者 Farhad Soleimanian Gharehchopogh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1175-1197,共23页
The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing conne... The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing connections between things. Communities are node clusters with many internal links but minimal intergroup connections. Although community detection has attracted much attention in social media research, most face functional weaknesses because the structure of society is unclear or the characteristics of nodes in society are not the same. Also, many existing algorithms have complex and costly calculations. This paper proposes different Harris Hawk Optimization (HHO) algorithm methods (such as Improved HHO Opposition-Based Learning(OBL) (IHHOOBL), Improved HHO Lévy Flight (IHHOLF), and Improved HHO Chaotic Map (IHHOCM)) were designed to balance exploitation and exploration in this algorithm for community detection in the social network. The proposed methods are evaluated on 12 different datasets based on NMI and modularity criteria. The findings reveal that the IHHOOBL method has better detection accuracy than IHHOLF and IHHOCM. Also, to offer the efficiency of the , state-of-the-art algorithms have been used as comparisons. The improvement percentage of IHHOOBL compared to the state-of-the-art algorithm is about 7.18%. 展开更多
关键词 Bionic algorithm Complex network Community detection Harris hawk optimization algorithm opposition-based learning Levy flight Chaotic maps
原文传递
Personalized movie recommendation method based on ensemble learning
6
作者 杨堃 DUAN Yong 《High Technology Letters》 EI CAS 2022年第1期56-62,共7页
Aiming at the personalized movie recommendation problem,a recommendation algorithm in-tegrating manifold learning and ensemble learning is studied.In this work,manifold learning is used to reduce the dimension of data... Aiming at the personalized movie recommendation problem,a recommendation algorithm in-tegrating manifold learning and ensemble learning is studied.In this work,manifold learning is used to reduce the dimension of data so that both time and space complexities of the model are mitigated.Meanwhile,gradient boosting decision tree(GBDT)is used to train the target user profile prediction model.Based on the recommendation results,Bayesian optimization algorithm is applied to optimize the recommendation model,which can effectively improve the prediction accuracy.The experimental results show that the proposed algorithm can improve the accuracy of movie recommendation. 展开更多
关键词 gradient boosting decision tree(GBDT) recommendation algorithm manifold learn-ing ensemble learning Bayesian optimization
下载PDF
CREATION OF OPTIMAL MOVEMENT STRATEGY OF PLURAL MOVING OB-JECTS BY GA
7
作者 Su Suchen Tsuchiya Kiichi( Waseda University, Japan) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第2期87-96,共10页
The topographic information of a closed world is expressed as a graph. The plural mov- ingobjects which go and back in it according to a single moving strategy are supposed.The moving strategy is expressed by numerica... The topographic information of a closed world is expressed as a graph. The plural mov- ingobjects which go and back in it according to a single moving strategy are supposed.The moving strategy is expressed by numerical values as a decision table. Coding is performed with this table as chromosomes, and this is optimized by using genetic algorithm. These environments were realized on a computer, and the simulation was carried out. As the result, the learning of the method to act so that moving objects do not obstruct mutually was recognized, and it was confirmed that these methods are effective for optimizing moving strategy. 展开更多
关键词 Genetic algorithm Graph theory Strategy Cooperative behavior Machine learn- ing
下载PDF
Improved sparrow search algorithm for RFID network planning
8
作者 Zhang Jiangbo Zheng Jiali +2 位作者 Quan Yixuan Lin Zihan Xie Xiaode 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第1期93-102,共10页
To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning... To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning and Lévy flight sparrow search algorithm(SSA),which is named elite opposition-based learning and Levy flight SSA(ELSSA).First,the algorithm initializes the population by an elite opposed-based learning strategy to enhance the diversity of the population.Second,Lévy flight is introduced into the scrounger’s position update formula to solve the situation that the algorithm falls into the local optimal solution.It has a probability that the current position is changed by Lévy flight.This method can jump out of the local optimal solution.In the end,the proposed method is compared with particle swarm optimization(PSO)algorithm,grey wolf optimzer(GWO)algorithm and SSA in the multiple simulation tests.The simulated results showed that,under the same number of readers,the average fitness of the ELSSA is improved respectively by 3.36%,5.67%and 18.45%.By setting the different number of readers,ELSSA uses fewer readers than other algorithms.The conclusion shows that the proposed method can ensure a satisfying coverage by using fewer readers and achieving higher comprehensive performance. 展开更多
关键词 radio frequency identification network PLANNING SPARROW SEARCH algorithm ELITE opposition-based learning LEVY FLIGHT
原文传递
Hybrid Modified Chimp Optimization Algorithm and Reinforcement Learning for Global Numeric Optimization
9
作者 Mohammad ShDaoud Mohammad Shehab +1 位作者 Laith Abualigah Cuong-Le Thanh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2896-2915,共20页
Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the ... Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the local search technique which leads to a loss of diversity,getting stuck in a local minimum,and procuring premature convergence.In response to these defects,this paper proposes an improved ChOA algorithm based on using Opposition-based learning(OBL)to enhance the choice of better solutions,written as OChOA.Then,utilizing Reinforcement Learning(RL)to improve the local research technique of OChOA,called RLOChOA.This way effectively avoids the algorithm falling into local optimum.The performance of the proposed RLOChOA algorithm is evaluated using the Friedman rank test on a set of CEC 2015 and CEC 2017 benchmark functions problems and a set of CEC 2011 real-world problems.Numerical results and statistical experiments show that RLOChOA provides better solution quality,convergence accuracy and stability compared with other state-of-the-art algorithms. 展开更多
关键词 Chimp optimization algorithm Reinforcement learning Disruption operator opposition-based learning CEC 2011 real-world problems CEC 2015 and CEC 2017 benchmark functions problems
原文传递
Generalized Oppositional Moth Flame Optimization with Crossover Strategy:An Approach for Medical Diagnosis
10
作者 Jianfu Xia Hongliang Zhang +4 位作者 Rizeng Li Huiling Chen Hamza Turabieh Majdi Mafarja Zhifang Pan 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第4期991-1010,共20页
In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimu... In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimum easily when facing the multi-dimensional and high-dimensional optimization problems.Therefore,in this work,a generalized oppositional MFO with crossover strategy,named GCMFO,is presented to overcome the mentioned defects.In the proposed GCMFO,GOBL is employed to increase the population diversity and expand the search range in the initialization and iteration jump phase based on the jump rate;crisscross search(CC)is adopted to promote the exploitation and/or exploration ability of MFO.The proposed algorithm’s performance is estimated by organizing a series of experiments;firstly,the CEC2017 benchmark set is adopted to evaluate the performance of GCMFO in tackling high-dimensional and multimodal problems.Secondly,GCMFO is applied to handle multilevel thresholding image segmentation problems.At last,GCMFO is integrated into kernel extreme learning machine classifier to deal with three medical diagnosis cases,including the appendicitis diagnosis,overweight statuses diagnosis,and thyroid cancer diagnosis.Experimental results and discussions show that the proposed approach outperforms the original MFO and other state-of-the-art algorithms on both convergence speed and accuracy.It also indicates that the presented GCMFO has a promising potential for application. 展开更多
关键词 nature-inspired algorithm moth-flame optimization generalized opposition-based learning crisscross search medical diagnosis
原文传递
HPPQ: A Parallel Package Queries Processing Approach for Large-Scale Data
11
作者 Meihui Shi Derong Shen +2 位作者 Tiezheng Nie Yue Kou Ge Yu 《Big Data Mining and Analytics》 2018年第2期146-159,共14页
A lot of scholars have focused on developing effective techniques for package queries, and a lot of excellent approaches have been proposed. Unfortunately, most of the existing methods focus on a small volume of data.... A lot of scholars have focused on developing effective techniques for package queries, and a lot of excellent approaches have been proposed. Unfortunately, most of the existing methods focus on a small volume of data. The rapid increase in data volume means that traditional methods of package queries find it difficult to meet the increasing requirements. To solve this problem, a novel optimization method of package queries(HPPQ) is proposed in this paper. First, the data is preprocessed into regions. Data preprocessing segments the dataset into multiple subsets and the centroid of the subsets is used for package queries, this effectively reduces the volume of candidate results. Furthermore, an efficient heuristic algorithm is proposed(namely IPOL-HS) based on the preprocessing results. This improves the quality of the candidate results in the iterative stage and improves the convergence rate of the heuristic algorithm. Finally, a strategy called HPR is proposed, which relies on a greedy algorithm and parallel processing to accelerate the rate of query. The experimental results show that our method can significantly reduce time consumption compared with existing methods. 展开更多
关键词 PACKAGE QUERIES HEURISTIC algorithms PARALLEL processing opposition-based learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部