The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore,...The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore, namely banded hematite quartzite (BHQ) containing 41.8wt% Fe and 41.5wt% SiO2,by using oleic acid, methyl isobutyl carbinol (MIBC), and sodium silicate as the collector, frother, and dispersant, respectively. The relative effects of these variables have been evaluated in half-normal plots and Pareto charts using central composite rotatable design. A quadratic response model has been developed for both Fe grade and recovery and optimized within the experimental range. The optimum reagent dosages are found to be as follows: collector concentration of 243.58 g/t, dispersant concentration of 195.67 g/t, pH 8.69, and conditioning time of 4.8 min to achieve the maximum Fe grade of 64.25% with 67.33% recovery. The predictions of the model with regard to iron grade and recovery are in good agreement with the experimental results.展开更多
基金This paper Is a summary of the work that was done on research projects sponsored by State Key Scientific Research ProgramsState Natural Science Fundation+1 种基金State Education Commiasion's Program for Ph.D.CandidatesLiaoning Provincial Science and T
文摘The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore, namely banded hematite quartzite (BHQ) containing 41.8wt% Fe and 41.5wt% SiO2,by using oleic acid, methyl isobutyl carbinol (MIBC), and sodium silicate as the collector, frother, and dispersant, respectively. The relative effects of these variables have been evaluated in half-normal plots and Pareto charts using central composite rotatable design. A quadratic response model has been developed for both Fe grade and recovery and optimized within the experimental range. The optimum reagent dosages are found to be as follows: collector concentration of 243.58 g/t, dispersant concentration of 195.67 g/t, pH 8.69, and conditioning time of 4.8 min to achieve the maximum Fe grade of 64.25% with 67.33% recovery. The predictions of the model with regard to iron grade and recovery are in good agreement with the experimental results.