Abstract: A new pyrometer, which can solve the affection of emissivity change in temperature measuring, has been developed by double Y - type optical fibers. The mathematical model of the new pyrometer is presented an...Abstract: A new pyrometer, which can solve the affection of emissivity change in temperature measuring, has been developed by double Y - type optical fibers. The mathematical model of the new pyrometer is presented and the errors of the new pyrometer are analyzed.展开更多
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effecti...The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effective aperture of 3.6 m–4.9 m) and a wide field of view (FOV) (5°). It has an innovative active reflecting Schmidt configuration which continuously changes the mirror’s surface that adjusts during the observation process and combines thin deformable mirror active optics with segmented active optics. Its primary mirror (6.67m×6.05 m) and active Schmidt mirror (5.74m×4.40 m) are both segmented, and composed of 37 and 24 hexagonal sub-mirrors respectively. By using a parallel controllable fiber positioning technique, the focal surface of 1.75 m in diameter can accommodate 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST will be the telescope with the highest rate of spectral acquisition. As a national large scientific project, the LAMOST project was formally proposed in 1996, and approved by the Chinese government in 1997. The construction started in 2001, was completed in 2008 and passed the official acceptance in June 2009. The LAMOST pilot survey was started in October 2011 and the spectroscopic survey will launch in September 2012. Up to now, LAMOST has released more than 480 000 spectra of objects. LAMOST will make an important contribution to the study of the large-scale structure of the Universe, structure and evolution of the Galaxy, and cross-identification of multiwaveband properties in celestial objects.展开更多
AIMTo evaluate the effect of misalignment on the measurements of retinal nerve fiber layer (RNFL) by spectral-domain optical coherence tomography (OCT).METHODSA total of 42 eyes from 21 healthy young subjects underwen...AIMTo evaluate the effect of misalignment on the measurements of retinal nerve fiber layer (RNFL) by spectral-domain optical coherence tomography (OCT).METHODSA total of 42 eyes from 21 healthy young subjects underwent RNFL measurements with RTVue spectral-domain OCT (Optovue Inc., Fremont, California, USA). Two baseline measurements with perfectly aligned central circle to the borders of the optic nerve and four misaligned measurements which were misaligned towards to four quadrants were taken. The differences in RNFL between the baseline and misaligned measurements were analyzed with a new algorithm called Helvacioglu reproducibility index (HRI) which is designed to measure the reproducibility of the scans by evaluating the RNFL changes in the four main quadrants.RESULTSThe average RNFL scores of the first two baseline measurements have good correlation (c=0.930) and good reproducibility scores (0.15±0.07). Superior misaligned measurements had significantly lower superior quadrant score and higher inferior quadrant score, similar nasal and little higher temporal scores (P1, P2<0.001, P3=0.553, P4=0.001). Inferior misaligned measurements had significantly higher superior quadrant score and lower inferior quadrant score with similar temporal and little lower nasal scores (P1, P2<0.001, P3=0.315, P4=0.016). Nasal misaligned measurements had significantly higher temporal quadrant score and lower nasal quadrant score with little lower superior and inferior scores (P1, P2, P4<0.001, P3=0.005). Temporal misaligned measurements had significantly higher nasal quadrant score and lower temporal quadrant score with similar superior and little higher inferior scores (P1, P2<0.001, P3=0.943, P4=0.001).CONCLUSIONGood alignment of the central circle to the borders of optic nerve is crucial to have correct and repeatable RNFL measurements. Misalignment to a quadrant resulted in falsely low readings at that quadrant and falsely high readings at the opposite quadrant.展开更多
文摘Abstract: A new pyrometer, which can solve the affection of emissivity change in temperature measuring, has been developed by double Y - type optical fibers. The mathematical model of the new pyrometer is presented and the errors of the new pyrometer are analyzed.
文摘The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effective aperture of 3.6 m–4.9 m) and a wide field of view (FOV) (5°). It has an innovative active reflecting Schmidt configuration which continuously changes the mirror’s surface that adjusts during the observation process and combines thin deformable mirror active optics with segmented active optics. Its primary mirror (6.67m×6.05 m) and active Schmidt mirror (5.74m×4.40 m) are both segmented, and composed of 37 and 24 hexagonal sub-mirrors respectively. By using a parallel controllable fiber positioning technique, the focal surface of 1.75 m in diameter can accommodate 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST will be the telescope with the highest rate of spectral acquisition. As a national large scientific project, the LAMOST project was formally proposed in 1996, and approved by the Chinese government in 1997. The construction started in 2001, was completed in 2008 and passed the official acceptance in June 2009. The LAMOST pilot survey was started in October 2011 and the spectroscopic survey will launch in September 2012. Up to now, LAMOST has released more than 480 000 spectra of objects. LAMOST will make an important contribution to the study of the large-scale structure of the Universe, structure and evolution of the Galaxy, and cross-identification of multiwaveband properties in celestial objects.
文摘AIMTo evaluate the effect of misalignment on the measurements of retinal nerve fiber layer (RNFL) by spectral-domain optical coherence tomography (OCT).METHODSA total of 42 eyes from 21 healthy young subjects underwent RNFL measurements with RTVue spectral-domain OCT (Optovue Inc., Fremont, California, USA). Two baseline measurements with perfectly aligned central circle to the borders of the optic nerve and four misaligned measurements which were misaligned towards to four quadrants were taken. The differences in RNFL between the baseline and misaligned measurements were analyzed with a new algorithm called Helvacioglu reproducibility index (HRI) which is designed to measure the reproducibility of the scans by evaluating the RNFL changes in the four main quadrants.RESULTSThe average RNFL scores of the first two baseline measurements have good correlation (c=0.930) and good reproducibility scores (0.15±0.07). Superior misaligned measurements had significantly lower superior quadrant score and higher inferior quadrant score, similar nasal and little higher temporal scores (P1, P2<0.001, P3=0.553, P4=0.001). Inferior misaligned measurements had significantly higher superior quadrant score and lower inferior quadrant score with similar temporal and little lower nasal scores (P1, P2<0.001, P3=0.315, P4=0.016). Nasal misaligned measurements had significantly higher temporal quadrant score and lower nasal quadrant score with little lower superior and inferior scores (P1, P2, P4<0.001, P3=0.005). Temporal misaligned measurements had significantly higher nasal quadrant score and lower temporal quadrant score with similar superior and little higher inferior scores (P1, P2<0.001, P3=0.943, P4=0.001).CONCLUSIONGood alignment of the central circle to the borders of optic nerve is crucial to have correct and repeatable RNFL measurements. Misalignment to a quadrant resulted in falsely low readings at that quadrant and falsely high readings at the opposite quadrant.