Genomic mining has identifi ed a novel microbial alkaline esterase from the Indian Ocean. This esterase was overexpressed in E. coli BL21(DE3) and further functionally characterized. Under optimal conditions(10 mmo...Genomic mining has identifi ed a novel microbial alkaline esterase from the Indian Ocean. This esterase was overexpressed in E. coli BL21(DE3) and further functionally characterized. Under optimal conditions(10 mmol/L substrate, p H 6.0, 2 h at 40 ℃), this esterase can hydrolyze racemic methyl mandelate to( R)-methyl mandelate with very high optical purity(e. e. 〉99%) and yield(nearly 90%). Interestingly, the stereoselectivity of this esterase is opposite to that of two previously reported lipases that can generate( S)-methyl mandelate through the hydrolysis of racemic methyl mandelate. No organic solvents or other additives were required to optimize the optical purity and production of the fi nal chiral product(R)-methyl mandelate, which can potentially simplify the production procedure of( R)-methyl mandelate catalyzed by esterase.展开更多
Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for ...Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx?≈?5550–9000 K, rotational Tr?≈?1350–2700 K and gas Tg?≈?850–1600 K temperatures, and electron density n?(1.1-1.9) ′101 4 cm^(-3) e under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. nereveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H_2O and O_2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced n e.The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tgsignificantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.展开更多
The new organic-inorganic compound, [C_6H_7N_2O_2]_3TeCl_5·2Cl was synthesized and its structure was determined at room temperature in the triclinic system (P^-1) with the following parameters: a = 10.5330(11...The new organic-inorganic compound, [C_6H_7N_2O_2]_3TeCl_5·2Cl was synthesized and its structure was determined at room temperature in the triclinic system (P^-1) with the following parameters: a = 10.5330(11) ?, b = 10.6663(11) ?, c = 15.9751(16)?, α = 82.090(2)°, β = 71.193(2)°, γ = 68.284(2)°and Z = 2. The final cycle of refinement led to R = 0.057 and Rw = 0.149. The crystal structure was stabilized by an extensive network of N--H···Cl and non-classical C--H···Cl hydrogen bonds between the cation and the anionic group. Several thermal analysis techniques such as thermogravimetric analysis, differential scanning calorimetric analysis and evolved gas analysis were used. We used isoconversional kinetics methods to determine the kinetics parameters. We observe that the decomposition of [C_6H_7N_2O_2]_3TeCl_5·2Cl entails the formation hydrochloric acid of nitroaniline as volatiles. The infrared spectra were recorded in the4000–400 cm^(-1)frequency region. The Raman spectra were recorded in the external region of the anionic sublattice vibration 50–1500 cm^(-1). The optical band gap was calculated from the UV-Vis absorbance spectra using classical Tauc relation which was found to be 3.12 and 3.67 eV.展开更多
基金Supported by the National Natural Science Foundation of China(No.21302199)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11030404)+1 种基金the Project of“Engineering HighPerformance Microorganisms for Advanced Bio-Based Manufacturing”from the Chinese Academy of Sciences(No.KGZD-EW-606)the Guangzhou Science and Technology Plan Projects(No.201510010012)
文摘Genomic mining has identifi ed a novel microbial alkaline esterase from the Indian Ocean. This esterase was overexpressed in E. coli BL21(DE3) and further functionally characterized. Under optimal conditions(10 mmol/L substrate, p H 6.0, 2 h at 40 ℃), this esterase can hydrolyze racemic methyl mandelate to( R)-methyl mandelate with very high optical purity(e. e. 〉99%) and yield(nearly 90%). Interestingly, the stereoselectivity of this esterase is opposite to that of two previously reported lipases that can generate( S)-methyl mandelate through the hydrolysis of racemic methyl mandelate. No organic solvents or other additives were required to optimize the optical purity and production of the fi nal chiral product(R)-methyl mandelate, which can potentially simplify the production procedure of( R)-methyl mandelate catalyzed by esterase.
基金financial support has been provided by the University Grants Commission:A-663-5/52/UGC/Eng-9/2013 and A-670-5/52/UGC/Eng-4/2013,University of Rajshahi
文摘Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx?≈?5550–9000 K, rotational Tr?≈?1350–2700 K and gas Tg?≈?850–1600 K temperatures, and electron density n?(1.1-1.9) ′101 4 cm^(-3) e under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. nereveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H_2O and O_2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced n e.The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tgsignificantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.
基金partially funded by the Tunisian Ministry of Higher Education and Scientific Research,the Spanish Programa Nacional de Materiales through project MAT2014-51778-C2-2-Rby the Universitat de Girona contract No.MPCUd G2016/059.Dfinancial support of the Tunisian Ministry of Higher Education and Scientific Research
文摘The new organic-inorganic compound, [C_6H_7N_2O_2]_3TeCl_5·2Cl was synthesized and its structure was determined at room temperature in the triclinic system (P^-1) with the following parameters: a = 10.5330(11) ?, b = 10.6663(11) ?, c = 15.9751(16)?, α = 82.090(2)°, β = 71.193(2)°, γ = 68.284(2)°and Z = 2. The final cycle of refinement led to R = 0.057 and Rw = 0.149. The crystal structure was stabilized by an extensive network of N--H···Cl and non-classical C--H···Cl hydrogen bonds between the cation and the anionic group. Several thermal analysis techniques such as thermogravimetric analysis, differential scanning calorimetric analysis and evolved gas analysis were used. We used isoconversional kinetics methods to determine the kinetics parameters. We observe that the decomposition of [C_6H_7N_2O_2]_3TeCl_5·2Cl entails the formation hydrochloric acid of nitroaniline as volatiles. The infrared spectra were recorded in the4000–400 cm^(-1)frequency region. The Raman spectra were recorded in the external region of the anionic sublattice vibration 50–1500 cm^(-1). The optical band gap was calculated from the UV-Vis absorbance spectra using classical Tauc relation which was found to be 3.12 and 3.67 eV.