Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit...Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.展开更多
Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that ...Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that of native myelin.Silencing of enhancer of zeste homolog 2(EZH2)hinders the differentiation,maturation,and myelination of Schwann cells in vitro.To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury,conditional knockout mice lacking Ezh2 in Schwann cells(Ezh2^(fl/fl);Dhh-Cre and Ezh2^(fl/fl);Mpz-Cre)were generated.Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated.This highlights the crucial role of Ezh2 in initiating Schwann cell myelination.Furthermore,we observed that 21 days after inducing a sciatic nerve crush injury in these mice,most axons had remyelinated at the injury site in the control nerve,while Ezh2^(fl/fl);Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates.This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination.In conclusion,EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury.Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.展开更多
“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health pro...“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic n...BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic nerve sheath diameter(ONSD)is an attractive option as it is reliable,repeatable and easily performed at the bedside.It has been sufficiently validated in traumatic brain injury(TBI)to be incorporated into the guidelines.However,currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made.AIM To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients.METHODS PubMed,Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP.Studies from 2010 to 2024 in English languages were included.RESULTS We found 37 articles relevant to our search.The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm.Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter.ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke,intracerebral bleeding and intracranial infection.However,ONSD is of doubtful utility in septic metabolic encephalopathy,dysnatremias and aneurysmal subarachnoid haemorrhage.CONCLUSION ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients.展开更多
Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene g...Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2–6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague–Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2–42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments.展开更多
Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve rep...Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.展开更多
Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies a...Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.展开更多
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ...FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons.展开更多
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ...Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.展开更多
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat...Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.展开更多
AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-thre...AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-three healthy subjects were enrolled.The ONH of both eyes were imaged four times by a swept-source-OCTA using a 3 mm×3 mm scanning protocol.Images of the radial peripapillary capillary were analyzed by a customized Matlab program,and the vessel density,fractal dimension,and vessel diameter index were measured.The repeatability of the four scans was determined by the intraclass correlation coefficient(ICC).The most well-centered optic disc from the four repeated scans was then selected for the interocular correlation and agreement analysis using the Pearson correlation coefficient,ICC and Bland-Altman plots.RESULTS:All swept-source-OCTA ONH parameters exhibited certain repeatability,with ICC>0.760 and coefficient of variation(CoV)≤7.301%.The obvious interocular correlation was observed for papillary vessel density(ICC=0.857),vessel diameter index(ICC=0.857)and fractal dimension(ICC=0.906),while circumpapillary vessel density exhibited moderate interocular correlation(ICC=0.687).Bland-Altman plots revealed an agreement range of-5.26%to 6.21%for circumpapillary vessel density.CONCLUSION:OCTA ONH parameters demonstrate good repeatability in healthy subjects.The interocular correlations of papillary vessel density,fractal dimension and vessel diameter index are high,but the correlation for circumpapillary vessel density is moderate.展开更多
Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving mul...Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.展开更多
Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve she...Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON.展开更多
BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference ...BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference in optic nerve sheath diameter(ONSD)between patients with and without a cervical collar using computed tomography(CT).METHODS:This was a single-center,retrospective study examining trauma patients who presented to the emergency department between January 1,2021,and December 31,2021.The ONSD on brain CT of the trauma patients was measured and analyzed to determine whether there was a difference between the ONSD with and without the cervical collar.RESULTS:The study population consisted of 169 patients.On CT imaging of patients with(n=66)and without(n=103)cervical collars,the mean ONSD in the axial plane were 5.43±0.50 mm and 5.04±0.46 mm respectively for the right eye and 5.50±0.52 mm and 5.11±0.46 mm respectively for the left eye.The results revealed an association between the presence of a cervical collar and the mean ONSD,which was statistically significant(P<0.001)for both the right and left eyes.CONCLUSION:A cervical collar may be associated with increased ONSD.The effect of this increase in the ONSD on clinical outcomes needs to be investigated,and the actual need for cervical collar in the emergency department should be evaluated on a case-by-case basis.展开更多
Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.Ho...Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.However,studies on neuroprotective strategies for optic neuropathy have increased in recent years.Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy.Regenerative medicine research into the repair of optic nerve damage using stem cells has Received considerable attention.Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGCfriendly microenvironments through paracrine effects.This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury,raising the controversies and unresolved issues surrounding the future of stem cells.展开更多
This paper presents findings on the potential of combining Selective Laser Trabeculoplasty (SLT) with Resveratrol supplementation to treat optic nerve degeneration in glaucoma patients. Glaucoma is a multifactorial di...This paper presents findings on the potential of combining Selective Laser Trabeculoplasty (SLT) with Resveratrol supplementation to treat optic nerve degeneration in glaucoma patients. Glaucoma is a multifactorial disease where IOP-lowering therapies often fail to halt progression, especially in low-tension glaucoma cases. SLT activates macrophages, promoting cleaning of the trabecular meshwork, while Resveratrol enhances mitochondrial function, reduces oxidative stress, and supports optic nerve regeneration. Our results from over 12,000 patients show that this integrative approach improves optic nerve health, particularly in patients with normal IOP.展开更多
Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI ...Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.展开更多
基金supported by the National Natural Science Foundation of China,No.82271114the Natural Science Foundation of Zhejiang Province of China,No.LZ22H120001(both to ZLC).
文摘Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
基金financially supported by the National Natural Science Foundation of China,Nos.82172104(to CX),81873767(to HZ)a grant from Jiangsu Provincial Research Hospital,Nos.YJXYY202204(to HZ),YJXYY202204-ZD04(to HZ)+5 种基金a grant from Jiangsu Provincial Key Medical CenterJiangsu Provincial Medical Innovation Center,No.CXZX202212Jiangsu Provincial Medical Key Discipline,No.ZDXK202240the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Technology Project of Nantong,No.MS22022008(to HZ)Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.SJCX21_1457(to WW)。
文摘Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that of native myelin.Silencing of enhancer of zeste homolog 2(EZH2)hinders the differentiation,maturation,and myelination of Schwann cells in vitro.To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury,conditional knockout mice lacking Ezh2 in Schwann cells(Ezh2^(fl/fl);Dhh-Cre and Ezh2^(fl/fl);Mpz-Cre)were generated.Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated.This highlights the crucial role of Ezh2 in initiating Schwann cell myelination.Furthermore,we observed that 21 days after inducing a sciatic nerve crush injury in these mice,most axons had remyelinated at the injury site in the control nerve,while Ezh2^(fl/fl);Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates.This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination.In conclusion,EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury.Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
基金supported by the Key Research and Development Project of Hubei Province of China,2022BCA028(to HC)。
文摘“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
文摘BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic nerve sheath diameter(ONSD)is an attractive option as it is reliable,repeatable and easily performed at the bedside.It has been sufficiently validated in traumatic brain injury(TBI)to be incorporated into the guidelines.However,currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made.AIM To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients.METHODS PubMed,Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP.Studies from 2010 to 2024 in English languages were included.RESULTS We found 37 articles relevant to our search.The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm.Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter.ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke,intracerebral bleeding and intracranial infection.However,ONSD is of doubtful utility in septic metabolic encephalopathy,dysnatremias and aneurysmal subarachnoid haemorrhage.CONCLUSION ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients.
基金supported by the Department of Defense AFIRMⅢW81XWH-20-2-0029 grant subcontractLone Star Paralysis gift,UT POC19-1774-13 grant+1 种基金Neuraptive Therapeutics Inc.26-7724-56 grantNational Institutes of Health R01-NS128086(all to GDB)。
文摘Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2–6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague–Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2–42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments.
基金supported by the National Natural Science Foundation of China,No.31870977(to HYS)the National Key Technologies Research and Development Program of China,No.2017YFA0104700(to FD)+2 种基金2022 Jiangsu Funding Program for Excellent Postdoctoral Talent(to MC)Priority Academic Program Development of Jiangsu Higher Education Institutions[PAPD]the Major Project of Basic Science(Natural Science)Research in Higher Education Institutions of Jiangsu Province,No.22KJA180001(to QRH)。
文摘Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.
基金supported by the German Research Foundation(DA 2255/1-1to SCD)+4 种基金a SickKids Research Training Competition(RESTRACOMP)Graduate Scholarship(to KJWS)an Ontario Graduate Scholarship(to KJWS)a grant from Natural Sciences and Engineering Research Council of Canada(NSERC)(to KJWS)a Kickstarter grant from the Institute of Biomedical Engineering(BME)at the University of Toronto(to KJWS)the Abe Frank Fund from the Riley’s Children Foundation(GHB)。
文摘Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
基金supported by the National Natural Science Foundation of China,No.81971177(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)the Peking University People's Hospital Research and Development Fund,No.RDX2021-01(to YK)。
文摘FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons.
基金supported by the National Natural Science Foundation of China,No.32371048(to YK)the Peking University People’s Hospital Research and Development Funds,No.RDX2021-01(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)。
文摘Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
基金supported by the National Natural Science Foundation of China,Nos.82271411(to RG),51803072(to WLiu)grants from the Department of Finance of Jilin Province,Nos.2022SCZ25(to RG),2022SCZ10(to WLiu),2021SCZ07(to RG)+2 种基金Jilin Provincial Science and Technology Program,No.YDZJ202201ZYTS038(to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University,No.2022qnpy11(to WLuo)The Project of China-Japan Union Hospital of Jilin University,No.XHQMX20233(to RG)。
文摘Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
基金Natural Science Foundation of Guangdong Province(No.2018A0303130306)Shantou Science and Technology Program(No.190917085269835,No.200629165261641).
文摘AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-three healthy subjects were enrolled.The ONH of both eyes were imaged four times by a swept-source-OCTA using a 3 mm×3 mm scanning protocol.Images of the radial peripapillary capillary were analyzed by a customized Matlab program,and the vessel density,fractal dimension,and vessel diameter index were measured.The repeatability of the four scans was determined by the intraclass correlation coefficient(ICC).The most well-centered optic disc from the four repeated scans was then selected for the interocular correlation and agreement analysis using the Pearson correlation coefficient,ICC and Bland-Altman plots.RESULTS:All swept-source-OCTA ONH parameters exhibited certain repeatability,with ICC>0.760 and coefficient of variation(CoV)≤7.301%.The obvious interocular correlation was observed for papillary vessel density(ICC=0.857),vessel diameter index(ICC=0.857)and fractal dimension(ICC=0.906),while circumpapillary vessel density exhibited moderate interocular correlation(ICC=0.687).Bland-Altman plots revealed an agreement range of-5.26%to 6.21%for circumpapillary vessel density.CONCLUSION:OCTA ONH parameters demonstrate good repeatability in healthy subjects.The interocular correlations of papillary vessel density,fractal dimension and vessel diameter index are high,but the correlation for circumpapillary vessel density is moderate.
文摘Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.
基金supported financially by grants from the National Natural Science Foundation of China(No.81771793).
文摘Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON.
文摘BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference in optic nerve sheath diameter(ONSD)between patients with and without a cervical collar using computed tomography(CT).METHODS:This was a single-center,retrospective study examining trauma patients who presented to the emergency department between January 1,2021,and December 31,2021.The ONSD on brain CT of the trauma patients was measured and analyzed to determine whether there was a difference between the ONSD with and without the cervical collar.RESULTS:The study population consisted of 169 patients.On CT imaging of patients with(n=66)and without(n=103)cervical collars,the mean ONSD in the axial plane were 5.43±0.50 mm and 5.04±0.46 mm respectively for the right eye and 5.50±0.52 mm and 5.11±0.46 mm respectively for the left eye.The results revealed an association between the presence of a cervical collar and the mean ONSD,which was statistically significant(P<0.001)for both the right and left eyes.CONCLUSION:A cervical collar may be associated with increased ONSD.The effect of this increase in the ONSD on clinical outcomes needs to be investigated,and the actual need for cervical collar in the emergency department should be evaluated on a case-by-case basis.
基金Supported by Science&Technology Department of Sichuan Province(No.2021YFS0214).
文摘Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.However,studies on neuroprotective strategies for optic neuropathy have increased in recent years.Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy.Regenerative medicine research into the repair of optic nerve damage using stem cells has Received considerable attention.Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGCfriendly microenvironments through paracrine effects.This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury,raising the controversies and unresolved issues surrounding the future of stem cells.
文摘This paper presents findings on the potential of combining Selective Laser Trabeculoplasty (SLT) with Resveratrol supplementation to treat optic nerve degeneration in glaucoma patients. Glaucoma is a multifactorial disease where IOP-lowering therapies often fail to halt progression, especially in low-tension glaucoma cases. SLT activates macrophages, promoting cleaning of the trabecular meshwork, while Resveratrol enhances mitochondrial function, reduces oxidative stress, and supports optic nerve regeneration. Our results from over 12,000 patients show that this integrative approach improves optic nerve health, particularly in patients with normal IOP.
基金CAMS Innovation Fund for Medical Sciences,No.2022-I2M-C&T-B-034.
文摘Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.