A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital c...A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.展开更多
Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) tec...Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) technology. This paper presents a framework to evaluate blocking performance of time-slot-ted OBS networks with multi-fiber wavelength channels. The proposed model is efficient for not only single class traffic such as individual circuit switch traffics or best-effort traffics but also mixed multi-class traffics. The effectiveness of the proposed model is validated by simulation results. The study shows that blocking per-formance of multi-fiber TS-OBS network is acceptable for future Internet services.展开更多
Optical time division multiplexing (OTDM) is one of the promisinig ways for the future high speed optical fiber communication networks. All optical switch is, being one of the core technologies of OTDM systems and n...Optical time division multiplexing (OTDM) is one of the promisinig ways for the future high speed optical fiber communication networks. All optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time division demultiplexing, packet switching, all optical regenerating and so on. This thesis mainly studies various all optical switch technologies and their utilization in the fields of all optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.\; (1) A novel all optical ultrafast demultiplexing scheme using the soliton self trapping effect in birefringent fiber is proposed.\; (2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.\; (3) The performance analysis and the configuration optimization of the all optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach Zehnder Interferometer configuration.\; (4) The 8×2\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.\; (5) The NOLM switch is used to realize the all optical 3R regeneration of 2\^5 Gb/s Return to Zero signal.\; (6) The feasibility and limitation of the all optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all optical packet dropping node suitable in the networks with ring or bus configuration and an all optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all optical packet switching through combining the all optical switches and the reasonable logic decisions.展开更多
A new all optical demultiplexer based on nonlinear effect in semiconductor laser amplifier (SLA) is proposed. It can demultiplex all channels of the OTDM signal concurrently, and it can also be integrated on ...A new all optical demultiplexer based on nonlinear effect in semiconductor laser amplifier (SLA) is proposed. It can demultiplex all channels of the OTDM signal concurrently, and it can also be integrated on a single chip. The proposed device consists of a series short Fabry Perot amplifiers (FPSLA) setting on the path vertically, through which the preamplified optical signal travels. Perpendicularly to the signal, K(channel number) paralleled beams of light pulse, which act as probes with repetition at the bit rate of one channel, irradiate on these FP SLAs , respectively, just when the corresponding signal channel pulse passes through the active region from lateral side. The transmissivity depends on the signal pulse. Theoretical analysis has been given. As a demonstrating example, a device operated at the speed of 25Gbit/s (2.5Gbit/s×10 ) is simulated and the results show that the about 9.24 dB extinction ratio can be achieved easily.展开更多
文摘A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.
基金Founded by the National Natural Science Foundation of China (No.60502005).
文摘Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) technology. This paper presents a framework to evaluate blocking performance of time-slot-ted OBS networks with multi-fiber wavelength channels. The proposed model is efficient for not only single class traffic such as individual circuit switch traffics or best-effort traffics but also mixed multi-class traffics. The effectiveness of the proposed model is validated by simulation results. The study shows that blocking per-formance of multi-fiber TS-OBS network is acceptable for future Internet services.
文摘Optical time division multiplexing (OTDM) is one of the promisinig ways for the future high speed optical fiber communication networks. All optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time division demultiplexing, packet switching, all optical regenerating and so on. This thesis mainly studies various all optical switch technologies and their utilization in the fields of all optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.\; (1) A novel all optical ultrafast demultiplexing scheme using the soliton self trapping effect in birefringent fiber is proposed.\; (2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.\; (3) The performance analysis and the configuration optimization of the all optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach Zehnder Interferometer configuration.\; (4) The 8×2\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.\; (5) The NOLM switch is used to realize the all optical 3R regeneration of 2\^5 Gb/s Return to Zero signal.\; (6) The feasibility and limitation of the all optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all optical packet dropping node suitable in the networks with ring or bus configuration and an all optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all optical packet switching through combining the all optical switches and the reasonable logic decisions.
文摘A new all optical demultiplexer based on nonlinear effect in semiconductor laser amplifier (SLA) is proposed. It can demultiplex all channels of the OTDM signal concurrently, and it can also be integrated on a single chip. The proposed device consists of a series short Fabry Perot amplifiers (FPSLA) setting on the path vertically, through which the preamplified optical signal travels. Perpendicularly to the signal, K(channel number) paralleled beams of light pulse, which act as probes with repetition at the bit rate of one channel, irradiate on these FP SLAs , respectively, just when the corresponding signal channel pulse passes through the active region from lateral side. The transmissivity depends on the signal pulse. Theoretical analysis has been given. As a demonstrating example, a device operated at the speed of 25Gbit/s (2.5Gbit/s×10 ) is simulated and the results show that the about 9.24 dB extinction ratio can be achieved easily.